The phase transition in bounded-size Achlioptas processes

Lutz Warnke University of Cambridge

Joint work with Oliver Riordan

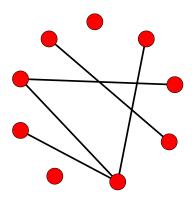
CLASSICAL MODEL

Paul Erdős

Alfred Rényi

Erdős-Rényi random graph process

- Start with an empty graph on *n* vertices
- In each step: add a random edge to the graph



CLASSICAL MODEL

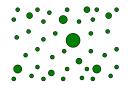
Erdős-Rényi random graph process

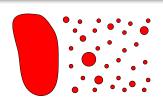
- Start with an empty graph on *n* vertices
- In each step: add a random edge to the graph

Phase transition (Erdős-Rényi, 1959)

Largest component 'dramatically changes' after $\approx n/2$ steps. Whp

$$L_1(tn) = \begin{cases} O(\log n) & \text{if } t < 1/2\\ \Theta(n) & \text{if } t > 1/2 \end{cases}$$





CLASSICAL MODEL

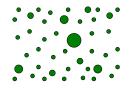
Erdős-Rényi random graph process

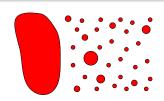
- Start with an empty graph on *n* vertices
- In each step: add a random edge to the graph

Phase transition (Erdős-Rényi, 1959)

Largest component 'dramatically changes' after $\approx n/2$ steps. Whp

$$L_1(tn) \approx egin{cases} arepsilon^{-2} \log(arepsilon^3 n)/2 & ext{if } t = 1/2 - arepsilon \ 4 arepsilon n & ext{if } t = 1/2 + arepsilon \end{cases}$$





Model with dependencies

Achlioptas processes

- Start with an empty graph on *n* vertices
- In each step: pick two random edges,
 add one of them to the graph (using some rule)

Remarks

- Yields family of random graph processes
- Contains 'classical' Erdős–Rényi process

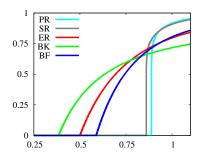
Motivation

- Improve our understanding of the phase transition phenomenon
- Test / develop methods for analyzing processes with dependencies

Phase transition in Achlioptas processes

Quantity of interest

Fraction of vertices in largest component after tn steps: $L_1(tn)/n$

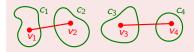


Goal of this talk

Prove that phase transition of a *large class* rules 'looks like' in Erdős–Rényi

WIDELY STUDIED ACHLIOPTAS RULES

Size rules



Decision (which edge to add) depends only on component sizes c_1, \ldots, c_4

• Sum rule: add $e_1 = \{v_1v_2\}$ iff $c_1 + c_2 \le c_3 + c_4$ ('add the edge which results in the smaller component')

Bounded-size rules

All component sizes larger than some constant B are treated the same

• Bohman–Frieze: add $e_1 = \{v_1v_2\}$ iff its endvertices are isolated ('add random edge with slight bias towards joining isolated vertices')

Previous work

Bounded-size rules (Spencer–Wormald, Bohman–Kravitz, Riordan–W.)

There is rule-dependent critical time $t_{\rm c}>0$ such that, whp,

$$L_1(tn) = egin{cases} O(\log n) & ext{if } t < t_{ ext{c}} \\ \Theta(n) & ext{if } t > t_{ ext{c}} \end{cases}$$

Bohman-Frieze rule (Janson-Spencer)

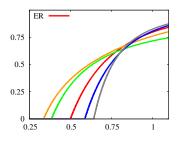
There is rule-dependent c > 0 such that for constant $\varepsilon > 0$, whp,

$$L_1(t_{\rm c}n+\varepsilon n)\approx c\varepsilon n$$

Some further developments

- Generalized Bohman-Frieze rules (Drmota-Kang-Panagiotou)
- Critical window (Bhamidi–Budhiraja–Wang)
- Other properties (Kang-Perkins-Spencer and Sen)

NEW RESULTS FOR BOUNDED-SIZE RULES (1/4)



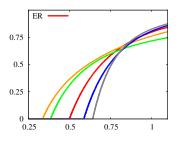
Linear growth of the giant component (Riordan-W.)

For any bounded-size rule there is c>0 such that for $\varepsilon\gg n^{-1/3}$, whp,

$$L_1(t_{\rm c}n+\varepsilon n)\approx c\varepsilon n$$

- Same qualitative behaviour as in Erdős–Rényi process
- Previous results: for *constant* $\varepsilon > 0$ and *restricted* class of rules

NEW RESULTS FOR BOUNDED-SIZE RULES (1/4)



Linear growth of the giant component (Riordan-W.)

For any bounded-size rule there is c>0 such that for $\varepsilon\gg n^{-1/3}$, whp,

$$L_1(t_{\rm c}n+\varepsilon n)\approx c\varepsilon n$$

- We also obtain whp $L_1(t_c n \varepsilon n) \approx C \varepsilon^{-2} \log(\varepsilon^3 n)$
- \bullet Our L_1 -results establish a number of conjectures (Janson-Spencer, Borgs-Spencer, Kang-Perkins-Spencer, Bhamidi-Budhiraja-Wang)

New Results for Bounded-Size Rules (2/4)

Size of the largest subcritical component (Riordan–W.)

For any bounded-size rule there is C>0 such that for $\varepsilon\gg n^{-1/3}$, whp,

$$L_1(t_c n - \varepsilon n) \approx C \varepsilon^{-2} \log(\varepsilon^3 n)$$

- Same qualitative form as in Erdős–Rényi process
- Conjectured by Kang–Perkins–Spencer and Bhamidi–Budhiraja–Wang
- Improves results of Bhamidi–Budhiraja–Wang and Sen

New Results for Bounded-Size Rules (3/4)

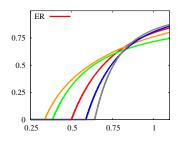
Number of vertices in small components (Riordan–W.)

For any bounded-size rule: as $k \to \infty$ and $\varepsilon \to 0$, we have

$$N_k(t_c n \pm \varepsilon n) \approx C k^{-3/2} e^{-(c+o(1))\varepsilon^2 k} n$$

- Same qualitative form as in Erdős–Rényi process
- Conjectured by Kang-Perkins-Spencer and Drmota-Kang-Panagiotou
- Improves partial results of Drmota–Kang–Panagiotou

NEW RESULTS FOR BOUNDED-SIZE RULES (4/4)



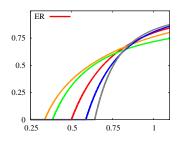
Take-home message (universality)

Phase transition of all bounded-size rules exhibits Erdős-Rényi behaviour

For example, for rule-dependent constants $t_{\rm c},c,C>0$ we whp have

$$L_1(i) pprox \begin{cases} C \varepsilon^{-2} \log(\varepsilon^3 n) & \text{if } i = t_c n - \varepsilon n, \\ c \varepsilon n & \text{if } i = t_c n + \varepsilon n, \end{cases}$$

NEW RESULTS FOR BOUNDED-SIZE RULES (4/4)



Take-home message (universality)

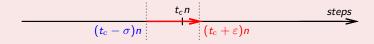
Phase transition of all bounded-size rules exhibits Erdős–Rényi behaviour

The 120+ pages proof uses a blend of techniques, including

- Combinatorial two-round exposure arguments,
- Differential equation method,
- PDE theory,
- Branching processes, . . .

STRUCTURE OF THE PROOF

Focus on evolution around critical point



Proof strategy

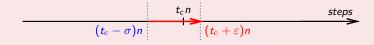
- Track bounded-size rule only up to step $(t_c \sigma)n$
- Go from $(t_c \sigma)n$ to $(t_c + \varepsilon)n$ via two-round exposure
- Analyze component-size distribution via branching-process

In comparison with previous approaches

- We track the process directly (no approximation)
- We can allow for $\varepsilon = \varepsilon(n) \to 0$

STRUCTURE OF THE PROOF

Focus on evolution around critical point



Proof strategy

- Track bounded-size rule only up to step $(t_c \sigma)n$
- Go from $(t_c \sigma)n$ to $(t_c + \varepsilon)n$ via two-round exposure
- Analyze component-size distribution via branching-process

Exemplar techniques

- Differential equation method + exploration arguments
- Branching processes + large deviation arguments

GLIMPSE OF THE PROOF (1/2)

Preprocessing graph after $(t_c - \sigma)n$ steps:

- S contains all vertices in components with size $\leq B$
- L contains all other vertices (i.e., with component-sizes > B)

First exposure of all steps $(t_{\rm c}-\sigma)n,\ldots,(t_{\rm c}+\varepsilon)n$

- ullet reveal which vertices of (v_1,\ldots,v_4) are in S or L
- for those v_j in S, also reveal which vertex of S

Crucial observation

Enough to inductively make all decisions (whether edge \emph{e}_1 or \emph{e}_2 added)

Proof: inductively track

- ullet edges added to S
- edges connecting *S* to *L* (their endvertices in *S*)

GLIMPSE OF THE PROOF (2/2)

Knowledge after first exposure round

- S: component structure (incl. number of incident S-L edges)
- L: component structure + total number of (random) L-L edges

Key observation

• So-far undetermined *L*-vertices are all *uniformly* distributed

Simple description of second exposure round

- for each *S*–*L* edge: pick random endvertex in *L*
- add prescribed number of purely random *L*–*L* edges
- ⇒ Can explore resulting graph via branching process

Some Difficulties

Some difficulties

- very little 'explicit' knowledge about the variables/functions involved
- approximation errors are everywhere (e.g., random fluctuations)

Bootstrapping knowledge about $X_k(tn) \approx x_k(t)n$

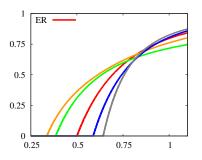
- Differential equation method: $x_k(\tau)$ solves differential equat
- Branching process based approach: $x_k(t) \leq Ae^{-ak}$
- Combining both (analyzing combinatorial structure of x'_k)

$$\kappa_k^{(j)}(t) \leq B_i e^{-bk}$$

SUMMARY

Phase transition of bounded-size rules

Same qualitative behaviour as in Erdős-Rényi process



Open problem

How can we analyze 'unbounded' size rules (e.g., the sum rule)?