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CLASSICAL MODEL

Erdés—Rényi random graph process

@ Start with an empty graph on n vertices
@ In each step: add a random edge to the graph
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Erd6s—Rényi random graph process

@ Start with an empty graph on n vertices
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Ly(tn) = O(logn) ift<1/2
W= Ve ifr>1/2




CLASSICAL MODEL

Erd6s—Rényi random graph process

@ Start with an empty graph on n vertices
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Largest component ‘dramatically changes’ after ~ n/2 steps. Whp
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MODEL WITH DEPENDENCIES

Achlioptas processes

@ Start with an empty graph on n vertices

@ In each step: pick two random edges,
add one of them to the graph (using some rule)

Remarks
@ Yields family of random graph processes
@ Contains ‘classical’ Erdés—Rényi process

@ Improve our understanding of the phase transition phenomenon

@ Test /develop methods for analyzing processes with dependencies




PHASE TRANSITION IN ACHLIOPTAS PROCESSES

Quantity of interest

Fraction of vertices in largest component after tn steps: Li(tn)/n

Goal of this talk
Prove that phase transition of a large class rules ‘looks like' in Erd6s—Rényi




WIDELY STUDIED ACHLIOPTAS RULES

SO = N Decision (which edge to add) depends
a only on component sizes cy, ...,

@ Sumrule: add e; = {viv} iffa+ < a+a
(‘add the edge which results in the smaller component')

Bounded-size rules

All component sizes larger than some constant B are treated the same

@ Bohman-Frieze: add e; = {v;v,} iff its endvertices are isolated
(‘add random edge with slight bias towards joining isolated vertices')



PREVIOUS WORK

Bounded-size rules (Spencer—Wormald, Bohman—Kravitz, Riordan-W.)

There is rule-dependent critical time t. > 0 such that, whp,

] O(logn) ift<t
ba(tn) = {@(n) it > t.

Bohman—Frieze rule (Janson—Spencer)

There is rule-dependent ¢ > 0 such that for constant € > 0, whp,

Li(ten+en) = cen

Some further developments
o Generalized Bohman—Frieze rules (Drmota—Kang—Panagiotou)
o Critical window (Bhamidi-Budhiraja—Wang)
@ Other properties (Kang—Perkins—Spencer and Sen)



NEW RESULTS FOR BOUNDED-SI1ZE RULES (1/4)

ER ——

Linear growth of the giant component (Riordan-W.)

For any bounded-size rule there is ¢ > 0 such that for e > n~1/3, whp,

Li(ten+en) = cen

Remarks
@ Same qualitative behaviour as in Erdés—Rényi process
@ Previous results: for constant € > 0 and restricted class of rules
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Linear growth of the giant component (Riordan-W.)

For any bounded-size rule there is ¢ > 0 such that for e > n~1/3, whp,

Li(ten+en) = cen

Remarks
@ We also obtain whp Li(t.n —en) ~ Cs 2 log(s3n)
@ Our Lj—results establish a number of conjectures (Janson—Spencer,
Borgs—Spencer, Kang—Perkins—Spencer, Bhamidi-Budhiraja—Wang)



NEW RESULTS FOR BOUNDED-SI1ZE RULES (2/4)

Size of the largest subcritical component (Riordan-W.)

-1/3

For any bounded-size rule there is C > 0 such that for ¢ > n , whp,

Li(ten — en) = C= 2 log(c3n)

Remarks
@ Same qualitative form as in Erdés—Rényi process
@ Conjectured by Kang—Perkins—Spencer and Bhamidi-Budhiraja—Wang
@ Improves results of Bhamidi—Budhiraja—Wang and Sen



NEW RESULTS FOR BOUNDED-SI1ZE RULES (3/4)

Number of vertices in small components (Riordan-W.)

For any bounded-size rule: as k — oo and € — 0, we have

Ni(ten £en) = Ck—3/2g—(cto(1))k

Remarks
@ Same qualitative form as in Erdés—Rényi process
@ Conjectured by Kang—Perkins—Spencer and Drmota—Kang—Panagiotou
@ Improves partial results of Drmota—Kang—Panagiotou



NEW RESULTS FOR BOUNDED-SI1ZE RULES (4/4)

ER ——
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Take-home message (universality)

Phase transition of all bounded-size rules exhibits Erdés—Rényi behaviour

For example, for rule-dependent constants t., c, C > 0 we whp have

. Ce2log(e3n) if i = t.n—en,
(i) { gletn) i
cen if i =t.n+en,



NEW RESULTS FOR BOUNDED-SI1ZE RULES (4/4)
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Take-home message (universality)
Phase transition of all bounded-size rules exhibits Erdés—Rényi behaviour

The 1204 pages proof uses a blend of techniques, including
@ Combinatorial two-round exposure arguments,
@ Differential equation method,
@ PDE theory,
@ Branching processes, ...



STRUCTURE OF THE PROOF

Focus on evolution around critical point

ten steps

Proof strategy

@ Track bounded-size rule only up to step (t. — o)n
e Go from (t. — o)n to (t. + £)n via two-round exposure
@ Analyze component-size distribution via branching-process

In comparison with previous approaches

@ We track the process directly (no approximation)
@ We can allow for e = ¢(n) — 0




STRUCTURE OF THE PROOF

Focus on evolution around critical point

ten steps

Proof strategy

@ Track bounded-size rule only up to step (t. — o)n
e Go from (t. — o)n to (t. + £)n via two-round exposure
@ Analyze component-size distribution via branching-process

Exemplar techniques

o Differential equation method + exploration arguments
@ Branching processes + large deviation arguments




GLIMPSE OF THE PROOF (1/2)

Preprocessing graph after (t. — o)n steps:

@ S contains all vertices in components with size < B

@ L contains all other vertices (i.e., with component-sizes > B)

First exposure of all steps (t. — o)n,...,(t. +¢€)n

@ reveal which vertices of (vq,...,vs) arein S or L
o for those v; in S, also reveal which vertex of S

Crucial observation

Enough to inductively make all decisions (whether edge e; or e; added)

Proof: inductively track
@ edges added to S
@ edges connecting S to L (their endvertices in S)



GLIMPSE OF THE PROOF (2/2)

Knowledge after first exposure round

@ S: component structure (incl. number of incident S—L edges)
@ L: component structure + total number of (random) L-L edges

Key observation

@ So-far undetermined L-vertices are all uniformly distributed

Simple description of second exposure round

@ for each S—L edge: pick random endvertex in L

@ add prescribed number of purely random L—L edges

= Can explore resulting graph via branching process



SOME DIFFICULTIES

Some difficulties

@ very little ‘explicit’ knowledge about the variables/functions involved
@ approximation errors are everywhere (e.g., random fluctuations)




SUMMARY

Phase transition of bounded-size rules

Same qualitative behaviour as in Erdés—Rényi process

Open problem

How can we analyze ‘unbounded’ size rules (e.g., the sum rule)?




