Motivation

Behaviour of a function of independent random variables ξ_1, \ldots, ξ_n:

$$X = F(\xi_1, \ldots, \xi_n)$$

- the random variable X often counts certain objects or events

Sharp concentration: $X \approx \mathbb{E}X$

In applications we usually aim at estimates of form

$$\mathbb{P}(X \not\in (1 \pm \varepsilon)\mathbb{E}X) \leq N^{-\omega(1)}$$

- Replacing $N^{-\omega(1)}$ with $o(1)$ is frequently not good enough

Topic of his talk

Easy-to-check conditions which guarantee concentration
Toy-Example: Sums of iid Indicators

Chernoff–Bernstein type inequality (1952 and 1924)

Let $X = (X_1, \ldots, X_N)$ be independent 0/1 variables: $\mathbb{P}(X_i = 1) = 1/2$. For $f(X) = \sum_{1 \leq i \leq N} X_i$ we have

$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/N}$$

Concentration follows:

- $|X - \mathbb{E}X| \leq N^{1/2 + o(1)}$ with probability $1 - N^{-\omega(1)}$

Setting of this talk

Similar result when $f(X)$ is a more complicated function of the X_i
Bounded differences inequality (McDiarmid, 1989)

Lipschitz-condition: whenever x, \tilde{x} differ in one coordinate,

$$|f(x) - f(\tilde{x})| \leq c$$

If $X = (X_1, \ldots, X_N)$ are independent random variables, then

$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/2Nc^2}$$

Concentration follows:

- $|f(X) - \mathbb{E}f(X)| \leq cN^{1/2+o(1)}$ with probability $1 - N^{-\omega(1)}$

Intuitively: this bound can’t be sharp???

- Large ‘worst case’ changes should be irrelevant
- Smaller ‘typical’ changes should matter
Typical bounded differences inequality (simplified, W.)

Typical event Γ:

$$\mathbb{P}(X \in \Gamma) \geq 1 - N^{-\omega(1)}$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate, then

$$|f(x) - f(\tilde{x})| \leq c$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X = (X_1, \ldots, X_N)$ we have

$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/3Nc^2} + N^{-\omega(1)}$$

Punchline for concentration:

- can replace worst case changes by typical changes
 (which makes heuristic considerations rigorous)
Typical bounded differences inequality (simplified, W.)

Typical event Γ:
\[\mathbb{P}(X \in \Gamma) \geq 1 - N^{-\omega(1)} \]

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,
\[|f(x) - f(\tilde{x})| \leq c \]

If $|f(X)| \leq N^{O(1)}$, then for independent $X = (X_1, \ldots, X_N)$ we have
\[\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/3Nc^2} + N^{-\omega(1)} \]

Remarks:
- $|f(X) - \mathbb{E}f(X)| \leq cN^{1/2+o(1)}$ with probability $1 - N^{-\omega(1)}$
- Matches heuristics: c is now the ‘typical change’
- Conditions fairly intuitive and easy-to-check
Typical bounded differences inequality (simplified, W.)

Typical event Γ:

$$\mathbb{P}(X \in \Gamma) \geq 1 - N^{-\omega(1)}$$

Typical Lipschitz-condition: if $x \in \Gamma$ and \tilde{x} differ in one coordinate,

$$|f(x) - f(\tilde{x})| \leq c$$

If $|f(X)| \leq N^{O(1)}$, then for independent $X = (X_1, \ldots, X_N)$ we have

$$\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq 2e^{-t^2/3Nc^2} + N^{-\omega(1)}$$

‘Naive guesses’ are wrong (in general):

- $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t \mid X \in \Gamma) \leq e^{-\Theta(t^2/Nc^2)}$
- $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t) \leq e^{-\Theta(t^2/Nc^2)} + \mathbb{P}(X \not\in \Gamma)$
- $\mathbb{P}(|f(X) - \mathbb{E}f(X)| \geq t \text{ and } X \in \Gamma) \leq e^{-\Theta(t^2/Nc^2)}$
It seems to be a convenient tool (e.g., to simplify/shorten proofs)

Some applications of the typical bounded differences inequality

- **Additive combinatorics**
 Sum-free subsets in abelian groups (Morris et. al)

- **Probabilistic combinatorics**
 Phase transition in random graph coloring (Coja-Oghlan et. al)

- **Theoretical computer science**
 Average case analysis of euclidean functions (de Graaf–Manthey)

- **Random graph processes**
 H-free graphs (W.)

- **Applied mathematics/Electrical engineering**
 Error-correcting codes (Häger et. al)

- ???
 Please try your favourite problem...
Reverse H-free process (ends with H-free graph)

- Start with a complete graph K_n on n vertices
- In each step: a random edge is \textit{removed}, chosen uniformly from all edges that are \textit{contained} in a copy of H

Motivation: applications to Ramsey/Turán theory

Question of Bollobás–Erdős (1990)

What is the typical final number of edges $M = M(n, H)$?

Some answers: the final number of edges is

- Makai: whp $M \sim c_H n^{2-1/d_2(H)}$ for \textit{strictly} 2-balanced H
- Warnke: whp $M \sim \mathbb{E}M = \Theta(n^{2-1/d_2(H)})$ for 2-balanced H
Results for the Bollobás–Erdős Question

Reverse H-free process: the final number of edges is

- Makai: whp $M \sim c_H n^{2-1/d_2(H)}$ for strictly 2-balanced H
- Warnke: whp $M \sim \mathbb{E} M = \Theta(n^{2-1/d_2(H)})$ for 2-balanced H

- Surprise: can analyze process without differential equation method!

Proof approaches

- Makai: delicate first and second moment arguments
 (using FKG, Janson+Suen inequalities to evaluate $\mathbb{E} M^2$)
- Warnke: using TBD-inequality it is enough to calculate $\mathbb{E} M$
 (we can routinely ‘override’ the weak dependencies)
Reverse H-free process (alternative definition)

Order edges of complete graph K_n uniformly at random (e_1, e_2, \ldots). Start with complete graph K_n and process edges sequentially ($e_{n \choose 2}, \ldots$): remove edge if and only if it currently lies in a copy of H.

Key observation (due to Makai + Erdős–Suen–Winkler)

The decision whether e_j is removed depends only on $(e_i)_{1 \leq i \leq j}$.

- Proof sketch: if e_j lies in a copy of H that contains edges e_i with $i > j$, then one of these would have been removed by the process.

Surprising consequence

e_j in final graph iff it closes no copy of H together with $(e_i)_{1 \leq i < j}$.

- Note: $\{e_1, \ldots, e_m\} \equiv G_{n,m}$, i.e., the uniform random graph.
Small typical changes (2/2)

Sketch of the argument for $H = K_3$ (triangle)

\[G_{n,m} \equiv \{e_1, \ldots, e_m\} \]

e_j in final graph iff it closes *no* copy of K_3 together with \((e_i)_{1 \leq i < j} \)

Standard facts for G_{n,m^*} with $m^* = n^{3/2}(\log n)^2$

- Wvhp every edge of G_{n,m^*} lies in at least one copy of K_3
- Wvhp every pair of vertices has codegree at most $\leq (\log n)^5$

Simple proof: concentration of the final number of edges

- Enough to study \((e_i)_{1 \leq i \leq m^*} \), i.e., first m^* edges
- **Small typical changes**: each edge influences $O((\log n)^5)$ other edges
- Typical bounded differences inequality *routinely* shows concentration
 (it also applies to $G_{n,m}$ or random permutations)
Typical bounded differences inequality (punchline)

For establishing concentration via the bounded-differences approach, we can often replace the worst case changes by the typical changes.

Remarks:
- Typical changes coincide with heuristics (whether concentration holds)
- Conditions fairly intuitive and easy-to-check
- Paper contains more power/flexible version of the inequality

Open Problem

More applications?