1. Let A be an integral domain, and let S be a multiplicative subset of A.
 (a) Prove that every ideal of $S^{-1}A$ is of the form $S^{-1}I$ for some ideal I of A.
 (b) Let $g : A \rightarrow B$ be a ring homomorphism such that $g(s)$ is a unit in B for all $s \in S$. Prove that there is a unique ring homomorphism $h : S^{-1}A \rightarrow B$ such that $g = h \circ f$, where $f : A \rightarrow S^{-1}A$ is the natural inclusion.

2. Let R be a Dedekind ring, and let S be a finite subset of nonzero prime ideals of R.
 (a) Prove that $R^* = \cap_p R_p^*$.
 (b) Show that there is a canonical exact sequence of abelian groups
 $$1 \rightarrow R^* \rightarrow (R^S)^* \rightarrow \oplus_{p \in S} \left(K^*/R_p^*\right) \rightarrow \text{Cl}(R) \rightarrow \text{Cl}(R^S) \rightarrow 1.$$
 (c) Prove that $K^*/R_p^* \cong \mathbb{Z}$ for each $p \in S$.
 (d) If K is a number field and $R = \mathcal{O}_K$, use Dirichlet’s unit theorem to show that
 $$(R^S)^* \cong W_K \times \mathbb{Z}^{r_1+r_2-1+|S|}.$$

3. Let $\overline{\mathbb{Q}}$ denote an algebraic closure of \mathbb{Q}. Show that a subgroup G of $\overline{\mathbb{Q}}^*$ is finitely generated if and only if $G \subseteq (\mathcal{O}_K^S)^*$ for some number field K and some finite set S of nonzero prime ideals of \mathcal{O}_K.

4. Prove that e and f are multiplicative in towers, in the sense that if $p_1 \subset p_2 \subset p_3$ are nonzero prime ideals contained in the number rings $A_1 \subset A_2 \subset A_3$, then $e(p_3/p_1) = e(p_3/p_2) \cdot e(p_2/p_1)$ and $f(p_3/p_1) = f(p_3/p_2) \cdot f(p_2/p_1)$.

5. Find a prime number p and quadratic extensions K and L of \mathbb{Q} illustrating of each of the following:

(a) p can be totally ramified in K and L without being totally ramified in KL.

(b) K and L can each contain unique primes lying over p while KL does not.

(c) p can be inert in K and L without being inert in KL.

(d) The residue degrees of p in K and L can be 1 without being 1 in KL.

6. Let L/K be a Galois extension of number fields. Suppose q is a nonzero prime ideal of \mathcal{O}_L lying over the nonzero prime ideal p of \mathcal{O}_K. Let $D = D_{q/p}$ and $I = I_{q/p}$. Show that:

(a) L^D is the smallest intermediate field K' such that q is the only prime ideal of \mathcal{O}_L lying over $p' = \mathcal{O}_{K'} \cap q$.

(b) L^I is the smallest intermediate field K' such that q is totally ramified over $p' = \mathcal{O}_{K'} \cap q$.