Notes on Cauchy’s theorem

We first give McKay’s proof of Cauchy’s theorem. The following argument is a slight variant of §3.2 Exercise 9.

Lemma. Let p be a prime number, and let G be a p-group (a finite group of order p^k for some $k \geq 1$) acting on a finite set S. Let Fix be the set of fixed points of the action (i.e., $\text{Fix} = \{x \in S : g \cdot x = x, \forall g \in G\}$). Then

$$|\text{Fix}| \equiv |S| \pmod{p}.$$

Proof. Let x_1, \ldots, x_t represent the different orbits. Then

$$x_i \in \text{Fix} \iff \text{Orbit}(x_i) = \{x_i\}.$$

Also, $|\text{Orbit}(x_i)| = [G : \text{Stab}(x_i)]$ divides $|G| = p^k$, so it is either 1 (if x_i is a fixed point) or a power of p (otherwise). Since the orbits partition G, we have

$$|S| = \sum_{i=1}^{t} [G : \text{Stab}(x_i)] \equiv |\text{Fix}| \pmod{p}.$$

$$\square$$

Theorem (Cauchy). If G is a finite group and p is a prime dividing $|G|$, then G has an element of order p (and therefore a subgroup of order p).

Proof. Let

$$S = \{(x_1, x_2, \ldots, x_p) : x_i \in G, x_1x_2\ldots x_p = 1\}.$$

Then $|S| = |G|^{p-1}$. The group $\mathbb{Z}/p\mathbb{Z}$ acts on S by cyclically right-shifting the indices of the x_i’s. If F denotes the number of fixed points of this action, then $F \equiv |G|^{p-1} \equiv 0 \pmod{p}$ by the Lemma. Since $(1,1,\ldots,1)$ is fixed, there must be at least $p-1$ other fixed points. All fixed points are of the form (x,x,\ldots,x) with $x \in G$ and $x^p = 1$. Taking any $x \neq 1$ in Fix, we have $|x| = p$ and we’re done.

$$\square$$
Here’s another proof of Cauchy’s theorem in the special case of abelian groups. It is interesting to give a separate proof in this case because (i) the proof is instructive, and (ii) the proof of the Sylow theorems requires only this special case.

Lemma. Let G be a finite group, and let $x \in G$. Then $x^m = 1 \iff |x| \mid m$.

Proof. One implication is clear. For the other direction, suppose $x^m = 1$. Let $n = |x|$, and write $m = nq + r$ with $0 \leq r < n$. Then $x^r = x^m(x^{-q})^n = 1$ so $r = 0$ by the minimality of n. Thus $n \mid m$. \qed

Using this lemma, one deduces the following result.

Lemma. Let G be a finite group, $x \in G$, and let a be a positive integer. Finally, let $n = |x|$. Then

$$|x^a| = \frac{n}{(a, n)}.$$

In particular, if $(a, n) = 1$ then $|x^a| = |x|$, and if $a \mid n$ then $|x^a| = |x|/a$.

Proof. See §2.3 Prop. 5 on p.57 of the book. \qed

Theorem (Cauchy’s theorem for abelian groups). If G is a finite abelian group and p is a prime dividing $|G|$, then G has an element of order p.

Proof. By induction on $|G|$. It’s clearly true for $|G| = 1$. Now suppose $|G| > 1$, and let x be any non-identity element of G. If $p \mid |x|$, say $x = pk$, then $|x^k| = p$ by the above lemma, so we’re done. Suppose $p \nmid |x|$. Let $N = \langle x \rangle$. Since G is abelian, N is normal in G. Since $|G/N| = |G|/|N| < |G|$, and $p \nmid |N|$ implies $p \mid |G/N|$, we can apply induction to G/N to conclude that there exists $\overline{y} \in G/N$ of order p. Let y be a representative in G for \overline{y}. Then $y \notin N$ but $y^p \in N$. Thus $\langle y^p \rangle$ is strictly smaller than $\langle y \rangle$. Thus $|y^p| < |y|$, and by the previous lemma we have $(p, |y|) > 1$, so that $p \mid |y|$. If $|y| = pk$ then $|y^k| = p$ as before and we’re done. \qed