Geometry of points over \(\bar{\mathbb{Q}} \) of small height
Part I

Matthew Baker

Georgia Institute of Technology

MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties
January 19, 2006
Notation

- K: a field of characteristic zero
- X: an algebraic curve of genus $g \geq 1$ defined over K

We assume X is complete, nonsingular, and absolutely irreducible.
The Jacobian J of X is an abelian variety of dimension g with the property that

$$J(\overline{K}) = \text{Div}^0(X)/\text{Prin}(X).$$

By choosing a base point $P_0 \in X(\overline{K})$, one obtains an embedding

$$i_0 : X(\overline{K}) \hookrightarrow J(\overline{K})$$

$$P \mapsto [(P) - (P_0)]$$

From now on, we fix a base point $P_0 \in X(\overline{K})$ and identify $X(\overline{K})$ with its image in $J(\overline{K})$.

Matthew Baker
Geometry of points over \overline{Q} of small height Part I
The Manin-Mumford conjecture

Let X/K be a curve of genus $g \geq 2$. Then $X(\bar{K}) \cap J(\bar{K})_{\text{tors}}$ is finite.
The Mordell conjecture

The Manin-Mumford conjecture should be compared with the Mordell conjecture:

Theorem (Mordell Conjecture, proved by Faltings in 1983)

Suppose K is a number field, and let X/K be a curve of genus $g \geq 2$. Then $X(\bar{K}) \cap J(K)$ is finite.
If A/K is an abelian variety, a torsion subvariety of A is a translate by a torsion point of an abelian subvariety of A.

Theorem (Generalized Manin-Mumford Conjecture, proved by Raynaud in 1983)

Let V be an algebraic subvariety of an abelian variety A/K which is not a torsion subvariety. Then the intersection $V(\bar{K}) \cap J(\bar{K})_{\text{tors}}$ is not Zariski-dense in V.

Theorem (Generalized Mordell Conjecture, proved by Faltings in 1991)

Let K be a number field, and let V be an algebraic subvariety of an abelian variety A/K which is not a translate of an abelian subvariety. Then the intersection $V(\bar{K}) \cap J(K)$ is not Zariski-dense in V.
A brief history of some proofs of the Manin-Mumford and generalized Manin-Mumford conjectures:

- **Raynaud (1983):** Based on reduction mod p^2 and action of Galois on torsion points of J.
- **Coleman (1987):** Uses p-adic integration to analyze which primes can ramify in the field generated by torsion points on X.
- **Buium (1996):** Based on p-adic jet spaces; uses one of Coleman’s results.
- **Hrushovsky (1996):** Uses model theory (mathematical logic).
- **Pink-Rössler (2002):** Translation of Hrushovsky’s proof into classical algebraic geometry.
Mordell-Lang Conjecture

- An abelian group Γ has **finite rank** if there is a finitely generated subgroup $\Gamma_0 \subset \Gamma$ such that for every $P \in \Gamma$, there exists $n \geq 1$ for which $nP \in \Gamma_0$.

- Equivalently, Γ has finite rank iff $\Gamma \otimes \mathbb{Q}$ is a finite-dimensional \mathbb{Q}-vector space.

The following result synthesizes the Mordell and generalized Manin-Mumford conjectures:

Theorem (Mordell-Lang Conjecture, due to Faltings, Vojta, & Raynaud)

Let K be a number field, and let V be an algebraic subvariety of an abelian variety A/K which is not a translate of an abelian subvariety. Finally, let Γ be a **finite rank** subgroup of $A(\bar{K})$. Then the intersection $V(\bar{K}) \cap \Gamma$ is not Zariski-dense in V.

Applications of Mordell-Lang to curves

- A curve X is **hyperelliptic** if there is a degree 2 map from X to \mathbb{P}^1, and **bielliptic** if there is a degree 2 map from X to an elliptic curve.

- If X is hyperelliptic, the **hyperelliptic branch points** are the points of X where the degree 2 map from X to \mathbb{P}^1 is ramified.

Theorem (Faltings + Silverman-Abramovich-Harris, 1991)

Let K be a number field, and let X/K be a curve of genus $g \geq 2$. Then there exists a finite extension K'/K such that $\bigcup_{[L:K']=2} X(L)$ is infinite iff X is either hyperelliptic or bielliptic.

Theorem (Raynaud + Baker-Poonen, 2001)

Let X/K be a curve of genus $g \geq 2$. Then there are infinitely many pairs (P, Q) of distinct points in $X(\bar{K})$ with $(P) - (Q)$ torsion in $J(\bar{K})$ iff $g = 2$, or $g = 3$ and X is both hyperelliptic and bielliptic.
Let $N \geq 4$ be an integer.

Let F_N be the Fermat curve $F_N : X^N + Y^N = Z^N$.

A cusp is a point of $F_N(\overline{\mathbb{Q}})$ satisfying $XYZ = 0$.

Embed F_N into its Jacobian J_N using a cusp as a base point.

Rohrlich (1977) proved that the difference of two cusps is always torsion in J_N.

Theorem (Coleman-Tamagawa-Tzermias, 1998)

$$X_N(\overline{\mathbb{Q}}) \cap J_N(\overline{\mathbb{Q}})_{\text{tors}} = \{ \text{cusps} \}.$$
Let $p \geq 23$ be a prime number.

Let $Y_0(p)$ be the modular curve parametrizing elliptic curves together with a cyclic subgroup of order p, and let $X_0(p)$ be its two-point compactification obtained by adding the cusps 0 and ∞.

Embed $X_0(p)$ into its Jacobian $J_0(p)$ using a cusp as a base point.

Manin and Drinfeld proved that the difference $[(0) - (\infty)]$ is always torsion as an element of $J_0(p)$.

Theorem (Baker, Tamagawa, 1999)

Let H be the set of hyperelliptic branch points on $X_0(p)$ when X is hyperelliptic and $p \neq 37$, and otherwise let $H = \emptyset$. Then

$$X_0(p)(\overline{\mathbb{Q}}) \cap J_0(p)(\overline{\mathbb{Q}})_{\text{tors}} = \{0, \infty\} \cup H.$$
There are few nontrivial examples where we can explicitly determine all torsion points lying on a higher-dimensional subvariety of an abelian variety. One known result is the following:

Theorem (Baker, 1999)

Let \(V \subset J_0(p) \) be the (2-dimensional) image of the map \(X_0(p)^2 \to J_0(p) \) given by \((P, Q) \mapsto [(P) - (Q)] \). Let \(c = [(0) - (\infty)] \in J_0(p)(\bar{\mathbb{Q}})_{\text{tors}} \). If \(p > 311 \), then

\[
V(\bar{\mathbb{Q}}) \cap J_0(p)(\bar{\mathbb{Q}})_{\text{tors}} = \{0, \pm c\}.
\]

- Equivalently, the cusps 0 and \(\infty \) are the only distinct points of \(X_0(p)(\bar{\mathbb{Q}}) \) whose difference has finite order in \(J_0(p) \).
- Anderson, Grant, and Simon have some partial results describing the torsion points lying on the theta divisor of certain Fermat quotient curves.
Poonen (2001) developed an algorithm to compute the torsion points on an arbitrary curve.

The algorithm is based on Buium’s approach.

Poonen implemented the algorithm on a computer in the special case where $K = \mathbb{Q}$, $g = 2$, and the base point P_0 is a hyperelliptic branch point.

It would be interesting to develop an algorithm to compute the torsion points on higher-dimensional subvarieties of abelian varieties.
Open question

Question

Fix an integer \(g \geq 2 \). Is there a uniform bound for the number of torsion points lying on a curve \(X \) of genus \(g \)?

Remarks:

- For \(g = 2 \), the record is 22 torsion points.
- If we fix \(X \) and vary the base point \(P_0 \) used to embed \(X \) in its Jacobian, the number of torsion points remains bounded (Baker-Poonen, 2001).
An algebraic torus is an affine group variety of the form G^m_n for some $n \geq 1$, where $G_m = \mathbb{A}^1 - \{0\}$ is the multiplicative group over \mathbb{Q}. We have $G^m_n(\mathbb{C}) = (\mathbb{C}^*)^n$.

A semiabelian variety G is an extension of an abelian variety by a torus:

$$1 \rightarrow G^m_n \rightarrow G \rightarrow A \rightarrow 0.$$

A torsion subvariety of G is a translate by a torsion point of an algebraic subgroup of G.

Remark: The torsion subvarieties of G^m_n are those defined by one or more equations of the form $X_1^{a_1}X_2^{a_2} \cdots X_n^{a_n} = \zeta$, where $a_i \in \mathbb{Z}$ and ζ is a root of unity.
Theorem (Mordell-Lang Conjecture for semiabelian varieties, proved by McQuillan in 1995)

Let K be a number field, let G be a semiabelian variety, and let V be an algebraic subvariety of G which is not a translate of an algebraic subgroup. Finally, let Γ be a finite rank subgroup of $G(\bar{K})$. Then the intersection $V(\bar{K}) \cap \Gamma$ is not Zariski-dense in V.

Remarks:

- The special case where $G = \mathbb{G}_m^n$ ("Mordell-Lang conjecture for algebraic tori") was proved in 1984 by Laurent.
- The Manin-Mumford conjecture for semiabelian varieties was proved by Hindry in 1988, following earlier work of Serre and Ribet.
Let K be a number field, and let $S \subset M_K$ be a finite set of places. By Dirichlet’s theorem, the group \mathcal{O}_S^* of S-units in K^* is finitely generated.

The “Mordell” part of Mordell-Lang in the special case of

$$\{(X, Y) : X + Y = 1\} \subset \mathbb{G}_m \times \mathbb{G}_m$$

implies:

Theorem (Finiteness of solutions to the S-unit equation)

There are only finitely many S-units $\alpha \in K^*$ such that $1 - \alpha$ is also an S-unit.
A well-known argument shows that finiteness of solutions to the S-unit equation implies:

Corollary (Siegel’s Theorem)

Let K be a number field, let $S \subset M_K$ be a finite set of places, and let E/K be an elliptic curve. Then the set of S-integral points on E is finite.
Conjecture (Ailon-Rudnick)

If $a, b \neq \pm 1$ are multiplicatively independent non-zero integers with $\gcd(a - 1, b - 1) = 1$, then there are infinitely many integers $k \geq 1$ such that

$$\gcd(a^k - 1, b^k - 1) = 1.$$

For complex polynomials, something even stronger is known:

Theorem (Ailon-Rudnick)

If $f, g \in \mathbb{C}[t]$ are multiplicatively independent non-constant polynomials with $\gcd(f - 1, g - 1) = 1$, then there is a finite union \mathcal{P} of proper arithmetic progressions such that for all $k \in \mathbb{N} \setminus \mathcal{P}$,

$$\gcd(f^k - 1, g^k - 1) = 1.$$

Matthew Baker
Geometry of points over \mathbb{Q} of small height Part I
Proof of the Ailon-Rudnick theorem

- By the Manin-Mumford conjecture for curves in \mathbb{G}_m^2 (proved originally by Ihara, Serre, and Tate), the intersection of a non-torsion curve in $\mathbb{C}^* \times \mathbb{C}^*$ with $\mu_\infty \times \mu_\infty$ is finite.

- Applying this to the curve $\{(f(t), g(t)) : t \in \mathbb{C}\}$, there are only finitely many t for which both $f(t)$ and $g(t)$ are roots of unity when f, g are multiplicatively independent.

- Thus there are only finitely many possible linear factors $(t - \alpha_1), \ldots, (t - \alpha_m)$ of $\gcd(f^k - 1, g^k - 1)$.

- For each $i = 1, \ldots, m$, let k_i be the smallest positive integer such that $(t - \alpha_i) | \gcd(f(t)^{k_i} - 1, g(t)^{k_i} - 1)$.

- We must have $k_i > 1$, and for $k \not\in k_i \mathbb{N}$, $(t - \alpha_i) \nmid \gcd(f(t)^{k_i} - 1, g(t)^{k_i} - 1)$.

- $\bigcup_i k_i \mathbb{N}$ is the required union of arithmetic progressions.
The Mordell-Lang conjecture has been extended to function fields of arbitrary transcendence degree by Buium (in characteristic 0) and Hrushovski (in any characteristic).

The statement of Hrushovski’s theorem is slightly complicated, as one has to take into account issues arising from isotrivial varieties and inseparable extensions.

The proofs yield explicit quantitative bounds.

Hrushovski’s method of proof involves mathematical logic, in particular the model theory of difference fields.
Akio Tamagawa used one of Hrushovski’s theorems (the “Manin-Mumford conjecture in characteristic p”) to prove the following result about tame fundamental groups of curves in characteristic p (as defined by Grothendieck):

Theorem (Tamagawa, 2004)

There are only finitely many isomorphism classes of curves of genus $g \geq 2$ over $\overline{\mathbb{F}}_p$ having the same tame fundamental group.

The result is striking because in characteristic zero, every curve of genus g (for fixed g) has the same fundamental group!
The key idea in the proof of Tamagawa’s theorem is to consider the theta divisor Θ' of $X' = F^*(X)$ in $J' = F^*(J)$, where X is a curve over $\overline{\mathbb{F}}_p$, J is its Jacobian, and F is the Frobenius map.

As observed by Raynaud, the intersection $\Theta' (\overline{\mathbb{F}}_p) \cap J' (\overline{\mathbb{F}}_p)_{\text{tors}}$ contains a great deal of information about cyclic étale covers of X.

Tamagawa’s finiteness theorem follows by applying Hrushovski’s theorem.
Bogomolov asked the following question:

Question

Let K be a number field. Given a curve X/K of genus $g \geq 2$ embedded in its Jacobian J, does there exist $\varepsilon > 0$ such that the set

$$\{ P \in X(\bar{K}) : \hat{h}(P) < \varepsilon \}$$

is finite?
Ullmo (1998) answered Bogomolov’s question in the affirmative. Shortly after, Zhang generalized Ullmo’s result to higher dimensions.

Zhang’s theorem includes as a special case the Generalized Manin-Mumford Conjecture.

Theorem (Generalized Bogomolov Conjecture, proved by Zhang in 1998)

Let K be a number field, and let V be an algebraic subvariety of an abelian variety A/K which is not a torsion subvariety. Then there exists $\varepsilon > 0$ such that

$$\{ P \in V(\bar{K}) : \hat{h}(P) < \varepsilon \}$$

is not Zariski-dense in V.

Proofs of the generalized Bogomolov conjecture

A brief history of some proofs of the generalized Bogomolov conjecture:

- Zhang (1992): Proved the analogous result for subvarieties of algebraic tori.
- Bilu (1997): Proved equidistribution of small points for \mathbb{G}_m^n and deduced generalized Bogomolov for subvarieties of algebraic tori.
Let \(\{ P_n \} \) be a sequence of points in \(A(\overline{K}) \).

Let \(\delta_n \) denote the discrete probability measure on \(A(\mathbb{C}) \) supported equally on the Galois conjugates of \(P_n \).

We say \(\{ P_n \} \) is **generic** if no subsequence is contained in a proper subvariety of \(A \), and **strict** if no subsequence is contained in a proper **torsion subvariety** of \(A \).

Theorem (Szpiro-Ullmo-Zhang, 1997)

If \(\hat{h}(P_n) \to 0 \) and the sequence \(\{ P_n \} \) is **generic**, then \(\delta_n \) converges weakly to the unit Haar measure on \(A(\mathbb{C}) \).

Remark: Zhang proved that this remains true if “generic” is replaced by “strict”, which implies the Bogomolov conjecture.
Equidistribution of small points: open problems

- Generalize the Szpiro-Ullmo-Zhang equidistribution theorem to semiabelian varieties.
- Prove a non-archimedean version of the Szpiro-Ullmo-Zhang equidistribution theorem. This has recently been done using Berkovich spaces in some special cases:
 - Abelian varieties with good reduction (Chambert-Loir)
 - Elliptic curves (Chambert-Loir, Baker-Petsche)
- Formulate and prove higher-dimensional equidistribution theorems for points of small height with respect to a dynamical system. This has recently been done for dynamical systems on \mathbb{P}^1 by Baker-Hsia-Rumely, Favre-Rivera–Letelier, and Autissier-Chambert–Loir.
Let K be a number field, and let G/K be a semiabelian variety.

If $\Gamma \subset G(\overline{K})$, define

$$\Gamma_\varepsilon := \{ \gamma + P : \gamma \in \Gamma, P \in A(\overline{K}), \hat{h}(P) \leq \varepsilon \}.$$

Theorem (Mordell-Lang + Bogomolov, proved by Poonen (1999), Zhang (2000), Rémond (2003))

Let $\Gamma \subset G(\overline{K})$ be a finite rank subgroup, and let V be an algebraic subvariety of G which is not a translate of an algebraic subgroup. Then there exists $\varepsilon > 0$ such that $V(\overline{K}) \cap \Gamma_\varepsilon$ is not Zariski dense in V.
Remarks:

- Poonen and Zhang proved the Mordell-Lang + Bogomolov result for “almost split” semiabelian varieties, and Rémont established the general case.

- The almost split hypothesis came from Chambert-Loir’s extension of the Szpiro-Ullmo-Zhang equidistribution theorem to semiabelian varieties, which is limited to this case. Rémont’s proof does not use equidistribution.
Example: $X + Y = 1$

- It follows from the Bogomolov conjecture for curves in \mathbb{G}_m^2 that there exists $\varepsilon > 0$ such that the set

$$\{ \alpha \in \overline{\mathbb{Q}} : h(\alpha) + h(1 - \alpha) < \varepsilon \}$$

is finite.

- Zagier proved the following more precise result:

Theorem (Zagier, 1993)

For all algebraic numbers $\alpha \neq 0, 1, (1 \pm \sqrt{-3})/2$, we have

$$h(\alpha) + h(1 - \alpha) \geq \frac{1}{2} \log \frac{1 + \sqrt{5}}{2},$$

with equality if and only if α or $1 - \alpha$ is a primitive 10th root of unity.
Theorem (Beukers-Schlickewei, 1996)

If $\Gamma \subset (\overline{\mathbb{Q}}^*)^2$ is a subgroup of rank r, then

$$\#\{(x, y) \in \Gamma : x + y = 1\} \leq 256^{r+1}.$$

The proof breaks into three cases:

- **Small height** solutions, which are estimated using the Bogomolov discreteness property and sphere-packing bounds.
- **Medium height** solutions, which are counted using a *gap principle*.
- **Large height** solutions, which are ruled out by diophantine approximation.

Except for the particular constants involved, this generalizes a famous result of Evertse (1984) on solutions to $x + y = 1$ in S-units.
Remark: Rémond (2003) has vastly generalized this kind of result, proving explicit bounds of the above type, depending only on $r, \deg(V)$, and $\dim(G)$, when $\{x + y = 1\} \subset G^2_m$ is replaced by an arbitrary subvariety V of a semiabelian variety G.

Ih’s conjecture is a finiteness statement about torsion points which does not extend to small points.

Conjecture (Ih)

Let K be a number field, and let A/K be an abelian variety. Let D be an effective ample divisor on A, at least one of whose irreducible components is not a torsion subvariety of A. Then the set of all torsion points of $A(\bar{K})$ which are integral with respect to D is not Zariski dense in A.

Remarks:

- A torsion point P in $A(\bar{K})$ is integral with respect to D if its Zariski closure \bar{P} in a fixed model \mathcal{A} is disjoint from \bar{D}.
- The validity of the conjecture is independent of the choice of model.
- One can formulate an analogous conjecture for subvarieties of \mathbb{G}_m^n, and for dynamical systems.
Ih’s conjecture: Results

Ih’s conjecture has been proved for G_m and for elliptic curves. The statement for elliptic curves is the following:

<table>
<thead>
<tr>
<th>Theorem (Baker-Ih-Rumely, 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let K be a number field, let E/K be an elliptic curve, and let $P \in E(\bar{K})$ be a non-torsion point. Then the set of all torsion points of $E(\bar{K})$ which are integral with respect to P is finite.</td>
</tr>
</tbody>
</table>

Remarks:

- The theorem holds more generally with “integral” replaced by “S-integral”.
- Examples show that the theorem fails if P is torsion, or if torsion points are replaced by points of small height.
- The theorem is proved using properties of local canonical heights, David’s results on linear forms in elliptic logarithms, and a strong version of the Szpiro-Ullmo-Zhang equidistribution theorem for torsion points on elliptic curves.
In its simplest form, the conjecture for \mathbb{G}_m states:

Theorem (Baker-Ih-Rumely, 2005)

Fix an algebraic number $\alpha \in \bar{\mathbb{Q}}^$ which is not a root of unity. Then the set of all roots of unity which are integral with respect to α is finite.*

If α is an algebraic integer, the theorem says that there are only finitely many roots of unity $\zeta \in \bar{\mathbb{Q}}^*$ such that $\alpha - \zeta$ is an algebraic unit.
Remarks:

- The hypothesis $h(\alpha) > 0$ is necessary: taking $\alpha = 1$, we recall that $1 - \zeta$ is a unit for each root of unity ζ of composite order.

- Finiteness for roots of unity cannot be strengthened to finiteness for small points. For example, take $\alpha = 2$ and let β_n be a root of the polynomial $f_n(x) = x^{2^n}(x - 2) - 1$. Then $h(\beta_n) \to 0$ and $2 - \beta_n$ is a unit for all $n \geq 1$.
The motivation for Ih’s conjecture is the following philosophical picture:

<table>
<thead>
<tr>
<th>Type of variety</th>
<th>\mathcal{O}_K</th>
<th>\mathbb{Z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projective</td>
<td>Generalized Mordell Conjecture</td>
<td>Manin-Mumford Conjecture</td>
</tr>
<tr>
<td>Affine</td>
<td>Lang’s Integrality Conjecture</td>
<td>Ih’s Conjecture</td>
</tr>
</tbody>
</table>

Remark: Lang’s integrality conjecture (proved by Faltings) is the statement that if D is an effective ample divisor on A, then the set of \mathcal{O}_K-integral points of A not meeting $\text{Supp}(D)$ is finite.