Extension Theorems for Homomorphisms

In this note, we prove some extension theorems for homomorphisms from rings to algebraically closed fields. The prototype is the following result:

Theorem 1 (Extension theorem for algebraic extensions). *If* \(L/K \) *is an algebraic extension of fields, then any embedding* \(\sigma \) *of* \(K \) *into an algebraically closed field* \(k \) *can be extended to an embedding* \(\tilde{\sigma} : L \to k \).

This was proved in class using Zorn’s Lemma. Note that some hypothesis akin to “\(k \) is algebraically closed” is needed for such a statement, since e.g. if \(L = K(\alpha) \) and \(f_\alpha(x) \) is the minimal polynomial of \(\alpha \) over \(K \), then \(\tilde{\sigma} \) must map \(\alpha \) to a root of \(f_\alpha(x) \) in \(k \). Since \(f_\alpha \) can be any monic polynomial in \(K[x] \), we need \(K \) to be algebraically closed in \(k \). A simple way to guarantee this is to require that \(k \) itself be algebraically closed.

We now prove an important generalization of Theorem 1 from algebraic extensions of fields to integral extensions of rings:

Theorem 2 (Extension theorem for integral extensions). *Let* \(A \subseteq B \) *be rings with* \(B \) *integral over* \(A \). *Then every homomorphism* \(\phi \) *of* \(A \) *to an algebraically closed field* \(k \) *can be extended to a homomorphism* \(\tilde{\phi} : B \to k \).

Proof. Let \(p = \ker(\phi) \), and let \(S = A \setminus p \). Since \(\phi \) factors through the canonical homomorphism \(A \to S^{-1}A \) (by the universal property of localization), \(S^{-1}B \) is integral over \(S^{-1}A \) (by problem 3(a) on page 2 of Homework 1), and the diagram

\[
\begin{array}{ccc}
B & \longrightarrow & S^{-1}B \\
\uparrow & & \uparrow \\
A & \longrightarrow & S^{-1}A
\end{array}
\]

is commutative (again by the universal property of localization), we are reduced to the case where \(A \) is a local ring and \(\ker(\phi) \) is the unique maximal ideal \(m \) of \(A \) (by replacing \(A \) with \(A_p = S^{-1}A \) and \(B \) with \(S^{-1}B \)). By the Going-Up Theorem (Theorem 3 below), there is a maximal ideal \(M \) of \(B \) lying over \(m \) (i.e., such that \(M \cap A = m \)). Since \(B/A \) is integral, \(B/M \) is an algebraic extension of \(A/m \). By Theorem 1, we can extend \(\phi : A/m \to k \) to a homomorphism \(\tilde{\phi} : B/M \to k \).
Composing with the natural projection maps $A \to A/m$ and $B \to B/M$ gives the desired extension of ϕ:

$$
\begin{array}{ccc}
B & \longrightarrow & B/M \\
\uparrow & & \uparrow \phi \\
A & \longrightarrow & A/m
\end{array} =
\begin{array}{ccc}
k & & k \\
\uparrow & & \uparrow \\
k & & k
\end{array}
$$

In the proof, we used:

Theorem 3 (Going-Up Theorem). If $A \subseteq B$ are rings with B integral over A, and p is a prime ideal of A, then there exists a prime ideal q lying over p, i.e., such that $q \cap A = p$. Furthermore, q is maximal iff p is maximal.

For this, we need a lemma:

Lemma 1. If $A \subseteq B$ are rings with B integral over A, q is a prime ideal of B, and $p = q \cap A$, then q is maximal iff p is maximal.

Proof. Since B/q is integral over A/p, and both are integral domains, we are reduced to proving the following statement: If $A \subseteq B$ are integral domains with B integral over A, then A is a field iff B is a field.

To see this, suppose first that A is a field. If $y \in B$ is nonzero, let $y^n + a_{n-1}y^{n-1} + \cdots + a_0$ be an integral dependence of minimal degree, with $a_i \in A$. As B is a domain, $a_0 \neq 0$, so $y^{-1} = -a_0^{-1}(y^{n-1} + \cdots + a_1) \in B$. Thus B is a field.

Conversely, if B is a field and $x \in A$ is nonzero, then $x^{-1} \in B$, hence is integral over A, so we have

$$x^{-m} + a'_{m-1}x^{-m+1} + \cdots + a'_0 = 0$$

with $a'_i \in A$. Thus $x^{-1} = -(a'_{m-1} + a'_{m-2}x + \cdots + a'_0x^{m-1}) \in A$, so A is a field.

Proof of Theorem 3. Let $S = A \setminus p$. As before, we have a commutative diagram

$$
\begin{array}{ccc}
B & \xrightarrow{\beta} & S^{-1}B \\
\uparrow & & \uparrow \\
A & \xrightarrow{\alpha} & S^{-1}A
\end{array}
$$

with $S^{-1}B$ is integral over $S^{-1}A = A_p$. Let M be any maximal ideal of $S^{-1}B$. Then $\mathfrak{m} = M \cap A_p$ is a maximal ideal in the local ring A_p by
Lemma 1, hence equals pA_p. Under the correspondence between prime ideals of $S^{-1}B$ and prime ideals of B disjoint from S, if $q = \beta^{-1}(M)$ is the prime ideal of B corresponding to M, one sees from the commutativity of the above diagram that $q \cap A = \alpha^{-1}(m) = \alpha^{-1}(pA_p) = p$. □

One can use the Extension Theorem for Integral Extensions to give an insightful proof of the Algebraic Nullstellensatz:

Theorem 4 (Algebraic Nullstellensatz). If L/K is a field extension and L is finitely generated as a K-algebra, then L is a finite extension of K.

Proof. Let x_1, \ldots, x_n be generators for L as a K-algebra. If L/K is algebraic, then (since L/K is finitely generated) it must be a finite extension, and we’re done. So let’s assume, for the sake of contradiction, that L/K is transcendental.

Let $t_1, \ldots, t_r \in L$ be a transcendence basis for L/K, i.e., $K[t_1, \ldots, t_r]$ is isomorphic to a polynomial ring in r variables, and x_1, \ldots, x_n are algebraic over $K(t_1, \ldots, t_r)$. (Convince yourself that such a basis always exists.) Let $p_i(X)$ be the minimal polynomial of x_i over $K(t_1, \ldots, t_r)$. Multiplying by a suitable nonzero element h of $K[t_1, \ldots, t_r]$ to clear denominators, we obtain a polynomial $q_i(X) = h \cdot p_i(X) \in K[t_1, \ldots, t_r][X]$ with $q_i(x_i) = 0$. Let $f = f(t_1, \ldots, t_r) \in K[t_1, \ldots, t_r]$ be the product of the leading coefficients of the $q_i(X)$. Then each x_i is integral over the ring $K[t_1, \ldots, t_r]_f$.

Let \overline{K} be an algebraic closure of K. Since \overline{K} is infinite and $f \neq 0$, there exist $y_1, \ldots, y_r \in \overline{K}$ such that $f(y_1, \ldots, y_r) \neq 0$. Consider the unique homomorphism $\phi : K[t_1, \ldots, t_r] \to \overline{K}$ which is the identity on K, and for which $\phi(t_i) = y_i$. Since $\phi(f) \neq 0$, the universal property of localization shows that ϕ extends uniquely to a homomorphism $\phi : K[t_1, \ldots, t_r]_f \to \overline{K}$. By Theorem 2, we can extend ϕ to a homomorphism

$$\tilde{\phi} : K[t_1, \ldots, t_r]_f[x_1, \ldots, x_n] \to \overline{K}$$

which is the identity on K. But $K[t_1, \ldots, t_r]_f[x_1, \ldots, x_n] = L$. Since L is a field, $\tilde{\phi}$ must be injective, so L can be embedded as a subfield of \overline{K} containing K. Thus L/K is algebraic, contradiction. □

We now consider the following related question: given a subring A of a field K, and a homomorphism ϕ from A to an algebraically closed field k, when is it possible to extend ϕ to a larger subring of K? If A is not integrally closed in K, then by Theorem 2 we can extend ϕ to the integral closure \overline{A} of A in K. Can we extend even further? The following result is the key to understanding the answer to this question:
Theorem 5. Let A be a subring of a field K, and let $x \in K^\times$. If ϕ is a homomorphism from A to an algebraically closed field k, then ϕ can be extended to a homomorphism from either $A[x]$ or $A[x^{-1}]$ to k.

Proof. By first extending ϕ to a homomorphism from A_p to k, with $p = \ker(\phi)$, we may assume that A is a local ring with maximal ideal $m = \ker(\phi)$.

If x is integral over A, then ϕ has an extension to $A[x]$ by Theorem 2.

Now assume that x is not integral over A, and let $B = A[x^{-1}]$. We claim that $mB \neq B$. Assuming this, it follows that mB is contained in some maximal ideal M of B. As $M \cap A$ contains m and m is maximal, it follows that $M \cap A = m$. Let y be the image in B/M of $x^{-1} \in B$. Since $B/M = (A/m)[y]$, we can extend the given map $\psi : A/m \to k$ to $\tilde{\psi} : B/M \to k$. Indeed, if y is algebraic over A/m, then this follows from Theorem 1, while if y is transcendental then we can define $\tilde{\psi}$ by sending y to any element of k that we like. (In fact, y must be algebraic over A/m by the Algebraic Nullstellensatz, but we don’t need to use this.) Composing with the natural projection $B \to B/M$ gives the desired extension.

To prove the claim, note that otherwise we can write

$$1 = a_0 + a_1 x^{-1} + \cdots + a_n x^{-n}$$

with $a_i \in m$. Multiplying by x^n, we get

$$(1 - a_0)x^n + b_{n-1}x^{n-1} + \cdots + b_0 = 0$$

with $b_i \in A$. As $a_0 \in m$, $1 - a_0 \in A^\times$, and dividing by $(1 - a_0)^{-1}$ we see that x is integral over A, a contradiction. \square

Corollary 1. Let A be a subring of a field K, and let ϕ be a homomorphism from A to an algebraically closed field k. If R is a maximal subring of K for which ϕ extends to a homomorphism $\Phi : R \to k$ (such subrings exist by Zorn’s lemma), then R is a valuation ring of K: for every $x \in K^\times$, either $x \in R$ or $x^{-1} \in R$.

Proof. Let Σ be the set of pairs (C, ψ) where C is a subring of K and $\psi : C \to k$ is a homomorphism extending ϕ. By Zorn’s lemma, there is a maximal element (R, Φ) of Σ, and R is a valuation ring by Theorem 5. \square

Note that the ring R given in Corollary 1 is a local ring with maximal ideal m equal to $\ker(\Phi)$: otherwise we could extend Φ even further to R_p, where $p = \ker(\Phi)$. (Exercise: $R_p \supseteq R$ unless R is already a local ring with maximal ideal p. Another exercise: Show that every valuation ring is a local ring.) Combining this observation with Corollary 1, we
obtain the following result (which is how the Extension Theorem is formulated in [Bump]):

Theorem 6 (The Extension Theorem). *Let A be a subring of a field K, and let $\phi : A \to k$ be a homomorphism from A to an algebraically closed field k. Then there exists a valuation ring R of K containing A, and a homomorphism $\Phi : R \to k$ extending ϕ, such that $\ker(\Phi)$ is the unique maximal ideal of R.*

One application of the Extension Theorem is the fact that if A is a subring of a field K, then the integral closure of A in K is the intersection of all valuation rings of K which contain A (Problem 6 on Homework 1). The Extension Theorem can also be used to prove the extension theorem for integral extensions and the Going-Up Theorem, though in these notes we have gone the other way, and used those results to prove the Extension Theorem. See [Bump] for an alternative, more direct proof of the Extension Theorem. The main advantages to the proofs given in these notes are: (a) the statement of the Extension Theorem is more motivated, and (b) our approach to the extension theorem for integral extensions and the Going-Up Theorem does not require the assumption made in [Bump] that A and B are integral domains.