1 The Pledge

Let m, n be odd positive integers. Suppose you have a deck consisting of mn different cards $0, 1, \ldots, mn - 1$. You first deal the cards into m rows of n cards each, dealing one row at a time from left to right, so that once the deck is exhausted the cards form an $m \times n$ rectangle. Now you pick up the cards one column at a time, from left to right, putting each successive card under the previous one. The reassembled deck is now a permutation $\sigma_{m,n}$ of the original deck. (For example, if $m = 3$ and $n = 5$ and the cards are originally in ascending order $0, 1, \ldots, 14$, then the reassembled deck is $0, 5, 10, 1, 6, 11, \ldots, 4, 9, 14$.)

Now for a combinatorial puzzle: what is the sign of the permutation $\sigma_{m,n}$? (If you’d like to think about this before seeing the answer, stop reading now!)

The answer is that $\text{sign}(\sigma_{m,n}) = 1$ if either $m \equiv 1 \pmod{4}$ or $n \equiv 1 \pmod{4}$, and $\text{sign}(\sigma_{m,n}) = -1$ if $m \equiv n \equiv 3 \pmod{4}$. In other words,

$$\text{sign}(\sigma_{m,n}) = (-1)^{\frac{(m-1)(n-1)}{4}}.$$ \hspace{1cm} (1)

To prove (1), recall that the sign of a permutation σ of a totally ordered finite set is equal to $(-1)^{I(\sigma)}$, where $I(\sigma)$ is the number of inversions of σ. (An inversion is a pair (i, i') with $i < i'$ and $\sigma(i) > \sigma(i')$.) If we index the rows by $0, 1, \ldots, m - 1$ and the columns by $0, 1, \ldots, n - 1$, then it is straightforward to verify that the cards whose initial positions in the rectangle are (i, j) and (i', j') yield an inversion of $\sigma_{m,n}$ if and only if $i < i'$ and $j > j'$. The number of such inversion pairs $((i, j), (i', j'))$ is $\binom{m}{2} \cdot \binom{n}{2}$, since each 2-element subset $\{i, i'\}$ of $\{0, 1, \ldots, m\}$ and $\{j, j'\}$ of $\{0, 1, \ldots, n\}$ gives rise to a unique inversion (by ordering the elements so that $i < i'$ and $j > j'$). This establishes (1) since m and n are assumed to be odd.

Formula (1) may bring to mind Gauss’s Law of Quadratic Reciprocity. Is this just a coincidence? Continue on, dear reader...
2 The Turn

In the previous section, the cards were originally dealt into an \(m \times n \) rectangular array. Let us assume in this section that \(m \) and \(n \) are relatively prime in addition to being odd and positive. If we index the rows by \(0, 1, \ldots, m-1 \) and the columns by \(0, 1, \ldots, n-1 \), as above, then the card dealt into position \((x, y)\) is \(nx + y \). By the Chinese Remainder Theorem, this formula naturally determines a permutation \(\alpha \) of the set \(C = \{0, 1, \ldots, mn-1\} \): send the unique element of \(C \) congruent to \(x \) (mod \(m \)) and \(y \) (mod \(n \)) to the unique element of \(C \) congruent to \(nx + y \) (mod \(m \)) and \(y \) (mod \(n \)). If we originally dealt the cards into columns rather than rows, we would (by symmetry) obtain a permutation \(\beta \) of \(C \) sending the unique element of \(C \) congruent to \(x \) (mod \(m \)) and \(y \) (mod \(n \)) to the unique element of \(C \) congruent to \(x \) (mod \(m \)) and \(x + my \) (mod \(n \)).

The point of this discussion is that the permutation \(\sigma_{m,n} \) from the previous section is just \(\beta \circ \alpha^{-1} \). Since sign is a homomorphism, we deduce that

\[
\text{sign}(\alpha) \cdot \text{sign}(\beta) = \text{sign}(\sigma_{m,n}).
\] (2)

We already obtained a formula for the right-hand side of (2) in the previous section. We claim that \(\text{sign}(\alpha) \) is equal to the sign of the permutation of \(\mathbb{Z}/m\mathbb{Z} \) induced by multiplication by \(n \), which we write as \(\left[\frac{n}{m} \right] \). (By symmetry, we will have \(\text{sign}(\beta) = \left[\frac{m}{n} \right] \).)

To see this, note that \(\alpha \) is the product over \(y \in \{0, 1, \ldots, n-1\} \) of permutations \(\tau_y \) of \(\{0, 1, \ldots, m-1\} \), where \(\tau_y(x) \equiv nx + y \) (mod \(m \)). But \(\tau_y \) is a composition of \(\left[\frac{n}{m} \right] \) with the permutation \(x \mapsto x + y \) (mod \(m \)), which has sign +1 since it’s either trivial (if \(y = 0 \)) or an \(m \)-cycle (if \(y \neq 0 \)), and we’re assuming that \(m \) is odd. This proves the claim. We have therefore established the following result:

Theorem 1. Let \(m, n \) be relatively prime odd positive integers. Then

\[
\left[\frac{n}{m} \right] \cdot \left[\frac{m}{n} \right] = (-1)^{(m-1)(n-1)/4}.
\]

Formula (1) is very strongly reminiscent of Gauss’s Law of Quadratic Reciprocity — surely this is not just a coincidence! But what is the connection with the Legendre symbol? Now that you are hooked, dear friend, there is no choice but to continue reading...
3 The Prestige

The connection between (1) and Gauss’s Law of Quadratic Reciprocity is given by:

Lemma 1 (Zolotarev’s Lemma). If \(p \) is an odd prime and \(a \) is a positive integer not divisible by \(p \), then

\[
\left[\frac{a}{p} \right] = \left(\frac{a}{p} \right)
\]

where \(\left(\frac{a}{p} \right) \) denotes the Legendre symbol.

To prove Zolotarev’s Lemma, it suffices to note that \(\left[\frac{\cdot}{p} \right] \) is a surjective homomorphism from \((\mathbb{Z}/p\mathbb{Z})^\times\) to \(\{\pm 1\}\); surjectivity follows from the fact that if \(g \) is a primitive root mod \(p \) (i.e., a cyclic generator of \((\mathbb{Z}/p\mathbb{Z})^\times\)) then \(\left[\frac{g}{p} \right] \) is a \((p - 1)\)-cycle and thus has signature \(-1\). The kernel of \(\left[\frac{\cdot}{p} \right] \) is therefore a subgroup of \((\mathbb{Z}/p\mathbb{Z})^\times\) of index 2, but the only such subgroup is the group of quadratic residues. Thus \(\left[\frac{\cdot}{p} \right] \) coincides with the Legendre symbol \(\left(\frac{\cdot}{p} \right) \).

Combining Zolotarev’s Lemma with Theorem 1 yields:

Corollary 1 (Law of Quadratic Reciprocity). If \(p \) and \(q \) are distinct odd primes, then

\[
\left(\frac{p}{q} \right) \cdot \left(\frac{q}{p} \right) = (-1)^{\frac{(p-1)(q-1)}{4}}.
\]