\qquad

1. $(4.8 .49,71,79)$ Find the indefinite integrals.
(a) (10 points)

$$
\int(7 x-2)^{3} d x
$$

(b) (10 points)

$$
\int \frac{1}{1+t^{2}} d t
$$

(c) (5 points)

$$
\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
$$

Solution:

(a)

$$
\int(7 x-2)^{3} d x=\frac{1}{28}(7 x-2)^{4}+C
$$

(b)

$$
\int \frac{1}{1+t^{2}} d t=\tan ^{-1}(t)+C
$$

(c)

$$
\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=-\csc \theta+C
$$

\qquad
2. (25 points) $(5.2 .29,35)$ Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1}\left[16-\frac{j / n+(j+1) / n}{6}\right]\left(x_{j+1}-x_{j}\right)
$$

where $x_{j}=j / n$ for $j=0,1,2, \ldots, n$. Hint: Interpret the sum as a Riemann sum with midpoints for the evaluation points.

Solution: This is a limit of Riemann sums (with midpoint evaluation points) for

$$
\int_{0}^{1}\left[16-\frac{x}{3}\right] d x=\left.\left[16 x-\frac{x^{2}}{6}\right]\right|_{0} ^{1}=16-\frac{1}{6}=\frac{95}{6}
$$

\qquad
3. (5.3.42, 5.6.105)
(a) (10 points) Find the area in the first quadrant under the graph of

$$
f(x)=\frac{9 x^{10}}{\sqrt{1-x^{22}}}
$$

and to the left of the line $x=1$.
(b) (15 points) Find the area in the first quadrant bounded below by the line $y=x / 4$, above left by the curve $y=1+\sqrt{x}$, above right by the curve $y=2 / \sqrt{x}$, and on the right by the line $x=4$.

Solution:

(a) Make a u-substitution with $u=x^{11}$ and $d u=11 x^{10} d x$.

$$
\begin{aligned}
A & =\int_{0}^{1} \frac{9 x^{10}}{\sqrt{1-x^{22}}} d x \\
& =\frac{9}{11} \int_{0}^{1} \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\frac{9}{11} \sin ^{-1} u_{\left.\right|_{0} ^{1}} \\
& =\frac{9}{11} \sin ^{-1}(1) \\
& =\frac{9 \pi}{22}
\end{aligned}
$$

(b)

$$
\begin{aligned}
A & =\int_{0}^{1}\left[1+\sqrt{x}-\frac{x}{4}\right] d x+\int_{1}^{4}\left[\frac{2}{\sqrt{x}}-\frac{x}{4}\right] d x \\
& =\left.\left[x+\frac{2}{3} x^{3 / 2}-\frac{x^{2}}{8}\right]\right|_{0} ^{1}+\left.\left[4 \sqrt{x}-\frac{x^{2}}{8}\right]\right|_{1} ^{4} \\
& =1+2 / 3-1 / 8+8-2-[4-1 / 8] \\
& =11 / 3
\end{aligned}
$$

\qquad
4. (25 points) (6.1.28) A solid is formed by rotating a certain area in the first quadrant about the y-axis. The area is bounded above by the line $y=2$ and on the right by the graph of $x=e^{y}$. Find the volume of the solid.

Solution: We use the "disks" method:

$$
\begin{aligned}
V & =\int_{0}^{2} \pi e^{2 y} d y \\
& =\left.\frac{\pi}{2} e^{2 y}\right|_{0} ^{2} \\
& =\frac{\pi}{2}\left[e^{4}-1\right] .
\end{aligned}
$$

