1. (25 points) (6.1.52) Find the volume of the solid generated by revolving the triangular region bounded by the lines $y=2 x, y=0$, and $x=1$ about the line $x=2$.

Solution: Using the method of washers, the outer radius of the washer is $2-y / 2$ while the inner radius is 1 . Thus, the volume is

$$
\begin{aligned}
V & =\int_{0}^{2}\left[\pi(2-y / 2)^{2}-\pi(1)^{2}\right] d z \\
& =\pi \int_{0}^{2}\left(3-2 y+y^{2} / 4\right) d z \\
& =\pi(6-4+8 / 12) \\
& =8 \pi / 3
\end{aligned}
$$

Name and section: \qquad
2. (25 points) (6.4.14) Find the surface area of the surface generated by rotating the graph of $y=\sqrt{x}$ between $x=2$ and $x=6$ about the x-axis.

Solution:

$$
\begin{aligned}
A & =\int_{2}^{6} 2 \pi \sqrt{x} \sqrt{1+\frac{1}{4 x}} d x \\
& =\pi \int_{2}^{6} \sqrt{4 x+1} d x \\
& =\frac{\pi}{4} \frac{2}{3}(4 x+1)_{\left.\right|_{2} ^{6}}^{3 / 2} \\
& =\frac{\pi}{6}(125-27) \\
& =\frac{49 \pi}{3}
\end{aligned}
$$

\qquad
3. Compute the following integrals
(a) (10 points)

$$
\int_{0}^{\pi} \tan \left(\frac{x}{3}\right) d x
$$

(b) (10 points)

$$
\int_{2}^{4}(1+\ln t) t \ln t d t
$$

(c) (10 points)

$$
\int \tan x \ln (\cos x) d x
$$

Solution:

(a) $u=x / 3$ and then $v=\cos u$.

$$
\int_{0}^{\pi} \tan (x / 3) d x=3 \int_{0}^{\pi / 3} \frac{\sin u}{\cos u} d u=-3 \ln |\cos u|_{0}^{\pi / 3}=-3 \ln (1 / 2)=3 \ln 2
$$

(b) $u=t \ln t ; d u=(\ln t+1) d t$.

$$
\int_{2}^{4}(1+\ln t) t \ln t d t==\int_{2 \ln 2}^{4 \ln 4} u d u==\frac{1}{2}\left[16(\ln 4)^{2}-4(\ln 2)^{2}\right]=8(\ln 4)^{2}-2(\ln 2)^{2}=30(\ln 2)^{2} .
$$

(c) $u=\ln (\cos x) ; d u=-\tan x d x$.

$$
\int \tan x \ln (\cos x) d x=-\int u d u=-\frac{1}{2}[\ln (\cos x)]^{2}+C
$$

Name and section: \qquad
4. (25 points) (7.2.30) If

$$
y^{\prime}=-\alpha y, \quad y(30)=10^{6}, \quad y(40)=10^{3}
$$ then find $y(0)$.

Solution: $y(t)=c e^{-\alpha t}$. Therefore,

$$
\begin{aligned}
c e^{-30 \alpha} & =10^{6} \\
c e^{-40 \alpha} & =10^{3}
\end{aligned}
$$

and

$$
e^{10 \alpha}=10^{3}
$$

It follows that

$$
c\left(10^{3}\right)^{-3}=10^{6}
$$

or

$$
c=y(0)=10^{15} .
$$

