Math 1552, Exam 2: Integration (practice) Name and section:

1. (20 points) (6.1.53) Find the volume of the solid generated by revolving the region bounded by the parabola $y=x^{2}$ and the line $y=1$ about the line $x=1$. Hint: Use the method of washers.

Solution: The outer radius of the washer is $1+\sqrt{z}$ while the inner radius is $1-\sqrt{z}$. Thus, the volume is

$$
\begin{aligned}
V & =\int_{0}^{1}\left[\pi(1+\sqrt{z})^{2}-\pi(1-\sqrt{z})^{2}\right] d z \\
& =4 \pi \int_{0}^{1} \sqrt{z} d z \\
& =\frac{8 \pi}{3}
\end{aligned}
$$

\qquad
2. (20 points) (6.2.25) Use the method of cylindrical shells to find the volume of the solid generated by revolving the region bounded by $y=x$ and $y=x^{2}$ about the y-axis.

Solution: The shells are indexed by $x \in[0,1]$, and the height of the shell at radius x is $x-x^{2}$. Therefore, the volume by cylindrical shells is

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =2 \pi(1 / 3-1 / 4) \\
& =\frac{\pi}{6}
\end{aligned}
$$

\qquad
3. (20 points) (6.3.20) Find the length of the graph of $y=\ln (\cos x)$ between $x=0$ and $x=\pi / 4$.

Solution: We can parameterize this curve by $x(t)=t$ and $y(t)=\ln (\cos t)$ for $0 \leq t \leq \pi / 4$. The speed of the parameterization is

$$
\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=\sqrt{1+\tan ^{2} t}=\sec t
$$

Thus the length is

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sec t d t \\
& =\left.\ln (\sec t+\tan t)\right|_{0} ^{\pi / 4} \\
& =\ln (\sqrt{2}+1)-\ln (1) \\
& =\ln (1+\sqrt{2}) .
\end{aligned}
$$

\qquad
4. (7.1.4,7,19,30) Compute the following integrals
(a) (5 points)

$$
\int \frac{8 t}{4 t^{2}-5} d t
$$

(b) (5 points)

$$
\int \frac{1}{2 \sqrt{x}+2 x} d x
$$

(c) (5 points)

$$
\int \frac{e^{1 / t}}{t^{2}} d t
$$

(d) (5 points)

$$
\int_{1}^{4} \frac{2^{\sqrt{x}}}{\sqrt{x}} d x
$$

Solution:

(a) $u=4 t^{2}-5$.

$$
\int \frac{8 t}{4 t^{2}-5} d t=\int \frac{1}{u} d u=\ln |u|+C=\ln \left|4 t^{2}-5\right|+C
$$

(b) $u=1+\sqrt{x}$

$$
\int \frac{1}{2 \sqrt{x}+2 x} d x=\int \frac{1}{2} \frac{1}{\sqrt{x}(1+\sqrt{x})} d x=\int \frac{1}{u} d u=\ln (1+\sqrt{x})+C .
$$

(c) $u=1 / t$.

$$
\int \frac{e^{1 / t}}{t^{2}} d t=-\int e^{u} d u=-e^{1 / t}+C
$$

(d) $u=\sqrt{x}$.

$$
\int_{1}^{4} \frac{2^{\sqrt{x}}}{\sqrt{x}} d x=\int_{1}^{2} 2 \cdot 2^{u} d x=2^{u+1} /\left.\ln 2\right|_{1} ^{2}=(8-4) / \ln 2=4 / \ln 2 .
$$

Name and section: \qquad
5. (20 points) (7.2.3) Solve the initial value problem

$$
y^{\prime}=-0.6 y, \quad y(0)=100
$$

Solution: $y(t)=c e^{-0.6 t}$ and $y(0)=100$. Therefore,

$$
y(t)=100 e^{-0.6 t} .
$$

