Math 1552, Final Exam: Integration and Series (Asamaticoyction:

1. (10 points) (5P30) Find the area of the bounded region in the first quadrant cut off by $3=(\sqrt{x}+\sqrt{y})^{2}$.

Solution:

$$
\begin{aligned}
A & =\int_{0}^{3}(\sqrt{3}-\sqrt{x})^{2} d x \\
& =\left[3 x-2 \sqrt{2}\left(\frac{2}{3}\right) x^{3 / 2}+x^{2} / 2\right]_{0}^{3} \\
& =9-4 \sqrt{6}+9 / 2 \\
& =\frac{27-4 \sqrt{6}}{2}
\end{aligned}
$$

\qquad
2. (10 points) (6.5.30) A pump rated at 1000 ft-lbs per second is used to pump 250 cubic feet of water (weighing 62.4 lbs per cubic foot) from a reservoir level $z=0$ into a cylindrical tank with bottom 50 feet above the reservoir and radius 5 ft . Calculate how long this should take.

Solution: Notice that the tank will be filled to a height $H=250 /(25 \pi)=10 / \pi$. The work required to pump the slice of water which ends up at height h in the tank is approximately

$$
(50+h)(62.4)(25 \pi) \Delta h .
$$

Thus, the total work required is

$$
W=\int_{0}^{\pi / 10}(50+h)(62.4)(25 \pi) d h=25(62.4) \pi\left[5 \pi+\pi^{2} / 200\right]
$$

This would be given in ft-lbs, and if we divide by the rating of the pump, we should obtain the total time in seconds:

$$
\frac{62.4 \pi^{2}(125+\pi / 8)}{1000}=\frac{15.6 \pi^{2}(500+\pi / 2)}{1000}=\frac{7.8 \pi^{2}(1000+\pi)}{1000}=7.8 \pi^{2}(1+\pi / 1000]
$$

or about 77 seconds, or a little over a minute.

Name and section: \qquad
3. (10 points) (7.1.28) Compute the definite integral

$$
\int_{-2}^{0} 5^{-\theta} d \theta
$$

Solution: $u=-\theta \ln 5$.

$$
\int_{-2}^{0} e^{-\theta \ln 5} d \theta=-\frac{1}{\ln 5} \int_{\ln 25}^{0} e^{u} d u=\left.\frac{1}{\ln 5} e^{u}\right|_{0} ^{\ln 25}=\frac{24}{\ln 5} .
$$

\qquad
4. (10 points) (8.4.50) Solve the initial value problem.

$$
\left\{\begin{array}{l}
\sqrt{x^{2}-9} y^{\prime}=1 \quad \text { for } 3<x \\
y(5)=\ln 3
\end{array}\right.
$$

Solution: Integrating $y^{\prime}=1 / \sqrt{x^{2}-9}$, we obtain

$$
\begin{aligned}
y(x)-y(5) & =\int_{5}^{x} \frac{1}{\sqrt{t^{2}-9}} d t \\
& =\frac{1}{3} \int_{5}^{x} \frac{1}{\sqrt{(t / 3)^{2}-1}} d t \\
& =\int_{5 / 3}^{x / 3} \frac{1}{\sqrt{u^{2}-1}} d u .
\end{aligned}
$$

At this point, we make a trigonometric substitution $\sec \theta=u$ according to which $\cot \theta=1 / \sqrt{u^{2}-1}$ and $d u=\sec \theta \tan \theta d \theta$.

$$
\begin{aligned}
y(x) & =\ln (3)+\int_{5 / 3}^{x / 3} \frac{1}{\sqrt{u^{2}-1}} d u \\
& =\ln (3)+\int_{\sec ^{-1}(5 / 3)}^{\sec ^{-1}(x / 3)} \sec \theta d \theta \\
& =\ln (3)+\ln (\sec \theta+\tan \theta)_{\left.\right|_{\sec ^{-1}(5 / 3)} ^{\sec ^{-1}(3)}} \\
& =\ln (3)+\ln \left(x / 3+\sqrt{x^{2}-9} / 3\right)-\ln (3) \\
& =\ln \left(\frac{x+\sqrt{x^{2}-9}}{3}\right) .
\end{aligned}
$$

\qquad
5. (15 points) (9.2.3) Solve the first order linear equation

$$
x y^{\prime}+3 y=\frac{\sin x}{x^{2}} \quad \text { for } 0<x
$$

Solution: Putting the equation into standard form, we get

$$
y^{\prime}+\frac{3}{x} y=\frac{\sin x}{x^{3}}
$$

Thus, the integrating factor should be

$$
\mu=e^{\int(3 / x) d x}=e^{3 \ln x}=x^{3} .
$$

Multiplying the equation by the integrating factor, we get

$$
x^{3} y^{\prime}+3 x^{2} y=\left(x^{3} y\right)^{\prime}=\sin x
$$

Integrating, from some $x_{0}>0$ to x,

$$
x^{3} y-x_{0}^{3} y\left(x_{0}\right)=-\cos x+\cos x_{0}
$$

Therefore,

$$
y=\frac{1}{x^{3}}\left[-\cos x+\cos x_{0}+x_{0}^{3} y\left(x_{0}\right)\right]
$$

In this expression x_{0} can be any positive constant, and $y\left(x_{0}\right)$ can be taken to be any constant. Alternatively, we can write simply

$$
y=\frac{1}{x^{3}}[-\cos x+C]
$$

where C is an arbitrary constant.
\qquad
6. (15 points) (10P18) Discuss the convergence of the sequence $(-4)^{n} / n$!.

Solution: The limit is zero (and it helps to know this beforehand-see Theorem 5 in Chapter 10 Section 1). As long as $n>5$, we have

$$
\begin{aligned}
\left|\frac{(-4)^{n}}{n!}\right| & =\frac{4^{n}}{n!} \\
& <\frac{4^{n}}{5^{n-5} 5!} \\
& =\frac{5^{5}}{5!}\left(\frac{4}{5}\right)^{n} \rightarrow 0 .
\end{aligned}
$$

\qquad
7. (15 points) (10.7.27) Discuss the convergence of the series

$$
\sum_{j=1}^{\infty} \frac{(-1)^{j+1}(x+2)^{j}}{j 2^{j}}
$$

Solution: Denoting the j-th term by a_{j}, we attempt to use the ratio test:

$$
\lim _{j \rightarrow \infty} \frac{\left|a_{j+1}\right|}{\left|a_{j}\right|}=\lim _{j \rightarrow \infty} \frac{|(x+2)| j 2^{j}}{(j+1) 2^{j+1}}=\frac{|x+2|}{2} .
$$

Thus, the series converges absolutely for $|x+2|<2$ and diverges for $|x+2|>2$. When $x=-4$, the series becomes

$$
\sum \frac{-1}{j}
$$

This is the negative harmonic series and diverges, for example, by the integral test. When $x=0$, the series becomes

$$
\sum-\frac{(-1)^{j}}{j}
$$

This is the (negative) alternating harmonic series and converges by the alternating series test.
\qquad
8. (15 points) (10.9.5) Find the Taylor series expansion for $\cos \left(5 x^{2}\right)$ at $x=0$ and discuss the convergence of the series.

Solution: We know

$$
\cos x=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j)!} x^{2 j}
$$

Therefore,

$$
\cos \left(5 x^{2}\right)=\sum_{j=0}^{\infty} \frac{(-25)^{j}}{(2 j)!} x^{4 j}
$$

and this series converges (absolutely) for all x since the series for $\cos x$ converges for all x.

