MAT 2401, Exam 1: (sample)

1. (25 points) (Ch 13 Review 4) Find the equation of the sphere with diameter the line segment with endpoints $(-1,4,2)$ and $(3,-2,6)$.

Solution: The midpoint of the segment is the center: $((-1+3) / 2,(4-2) / 2,(2+$ $6) / 2))=(1,1,4)$. The radius is half the length of the diameter:

$$
\frac{\|(-1-3,4+2,2-6)\|}{2}=\frac{\sqrt{16+36+16}}{2}=\sqrt{17} .
$$

The equation of the sphere is

$$
\|(x, y, z)-(1,1,4)\|=\sqrt{17}
$$

or

$$
(x-1)^{2}+(y-1)^{2}+(z-4)^{2}=17 .
$$

2. (25 points) (Ch 13 Review 22) Find the unit vectors perpendicular to $3 \overrightarrow{\mathbf{i}}+2 \overrightarrow{\mathbf{j}}-\overrightarrow{\mathbf{k}}$ and $-2 \overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}+\overrightarrow{\mathbf{k}}$.

Solution: The cross product gives an orthogonal vector:

$$
\left(\begin{array}{r}
3 \\
2 \\
-1
\end{array}\right) \times\left(\begin{array}{r}
-2 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{r}
6 \\
-1 \\
16
\end{array}\right)
$$

Thus, the two unit orthogonal vectors are $\pm(6,-1,16) / \sqrt{293}$.
3. (25 points) (Ch 14 Review 11) Define a vector valued function of a real variable on the interval $[0,2 \pi]$ which traces out the ellipse $16 x^{2}+4 y^{2}=64$ once in the counterclockwise direction starting at $(0,4)$.

Solution: First divide by 64 to put the ellipse in standard form:

$$
\frac{x^{2}}{4}+\frac{y^{2}}{16}=1 .
$$

This tells us that the horizontal semi-axis has length 2 and the vertical semi-axis has length 4. (The center is at the origin.) We can modify the vector valued function which traces a circle to get one that traces this ellipse.
Note that the formula $(\cos (t+\pi / 2), \sin (t+\pi / 2))$ gives a vector valued function which traces the unit circle in the counterclockwise direction starting from (1, 0). It is easily checked that the vector valued function

$$
\mathbf{r}(t)=(2 \cos (t+\pi / 2), 4 \sin (t+\pi / 2))
$$

satisfies the equation of the ellipse. Thus, this gives the desired function. The expression can also be simplified using the angle addition formulas for sine and cosine:

$$
\mathbf{r}(t)=(-2 \sin t, 4 \cos t)
$$

4. (25 points) (Ch 14 Review 21) Find a vector valued function which traces the tangent line to the curve traced out by $\mathbf{r}(t)=\left(t^{2}+2 t+1\right) \overrightarrow{\mathbf{i}}+(3 t+1) \overrightarrow{\mathbf{j}}+\left(t^{3}+t+1\right) \overrightarrow{\mathbf{k}}$ at the point $(1,1,1)$ in the same direction as the motion determined by \mathbf{r}.

Solution: We first find the value of t corresponding to $(1,1,1)$. That would be $t=0$. (Use the middle coordinate, for example.)
Next, find the tangent vector $\mathbf{r}^{\prime}(0)$. That would be $(2,3,1)$. The tangent line is therefore traced out by

$$
\mathbf{f}(t)=(1,1,1)+t(2,3,1)
$$

