MAT 2401, Exam 2: (sample)

1. (25 points) (Ch 15 Review 6) A rectangular box is inscribed in the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

The sides of the box are parallel to the coordinate planes, and the vertices of the box are on the ellipsoid. Find a function of two real variables which gives the volume of the box. Explain clearly the construction of your function and indicate the domain and range.

Solution: We will take as the first variable the positive x-coordinate of a side of the box parallel to the y,z-plane. There is only one such side, and we will call the first variable α. Similarly, we will take as the second variable the positive y-coordinate of a side of the box parallel to the x, z-plane. Call this variable β. Note that $0<\alpha<a$ and $0<\beta<b$. Thus, the domain is

$$
(0, a) \times(0, b)=\{(\alpha, \beta): 0<\alpha<a, 0<\beta<b\}
$$

The volume is the product of the length (2α), width (2β), and height $\left(2 c \sqrt{1-(\alpha / a)^{2}-(\alpha / b)^{2}}\right)$. Thus, a formula for the volume function is

$$
v(\alpha, \beta)=8 c \alpha \beta \sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}
$$

This function takes values in the interval $(0, \infty)$ and has range $(0, M]$ where M is the maximum possible value. What is this maximum possible value? Good question. To find M, we have to find places where the first partial derivatives vanish.

$$
\begin{aligned}
& \frac{\partial v}{\partial \alpha}=8 c \beta \sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}+-\frac{8 c \alpha^{2} \beta / a^{2}}{\sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}}=8 c \beta \frac{1-2 \alpha^{2} / a^{2}-\beta^{2} / b^{2}}{\sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}} \\
& \frac{\partial v}{\partial \beta}=8 c \alpha \sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}+-\frac{8 c \alpha \beta^{2} / b^{2}}{\sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}}=8 c \alpha \frac{1-\alpha^{2} / a^{2}-2 \beta^{2} / b^{2}}{\sqrt{1-\left(\frac{\alpha}{a}\right)^{2}-\left(\frac{\beta}{b}\right)^{2}}} .
\end{aligned}
$$

Setting each of these expression equal to zero, we must have

$$
1-2 \frac{\alpha^{2}}{a^{2}}-\frac{{\beta^{2}}^{2}}{b}=0=1-\frac{\alpha^{2}}{a^{2}}-2 \frac{{\beta^{2}}^{2}}{b}
$$

This means, in particular, that

$$
\frac{\alpha^{2}}{a^{2}}=\frac{\beta^{2}}{b^{2}}=\frac{1}{3} .
$$

So, for the max volume, $\alpha=a / \sqrt{3}$ and $\beta=b / \sqrt{3}$. That is,

$$
M=v(a / \sqrt{3}, b / \sqrt{3})=(8 c a b / 3) \sqrt{1 / 3}=\frac{8 a b c \sqrt{3}}{9} .
$$

2. (25 points) (Ch 15 Review 40) Calculate the first and second partial derivatives of $f(x, y)=x^{2} e^{x / y}$.

Solution:

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x e^{x / y}+x^{2} e^{x / y} / y=\frac{x e^{x / y}}{y}(x+2 y) \\
\frac{\partial f}{\partial y}=-\left(x^{3} / y^{2}\right) e^{x / y} \\
\frac{\partial^{2} f}{\partial x^{2}}=\frac{2 x+2 y}{y} e^{x / y}+\frac{x(x+2 y)}{y^{2}} e^{x / y}=\frac{\left.x^{2}+4 x y+2 y^{2}\right)}{y^{2}} e^{x / y} . \\
\frac{\partial^{2} f}{\partial x \partial y}=-\frac{3 x^{2}}{y^{2}} e^{x / y}-\frac{x^{3}}{y^{3}} e^{x / y}=-\frac{x^{2}(3 y+x)}{y^{3}} e^{x / y} \\
\frac{\partial^{2} f}{\partial y^{2}}=\frac{2 x^{3}}{y^{3}} e^{x / y}+\frac{x^{4}}{y^{4}} e^{x / y}=\frac{x^{3}(2 y+x)}{y^{4}} e^{x / y}
\end{gathered}
$$

3. (25 points) (Ch 16 Review 11) Find the directional derivative of $f(x, y)=3 x^{2}-2 x y^{2}+1$ at $(3,2)$ toward the origin.

Solution: The direcitonal derivative in the direction \mathbf{v}, denoted $D_{\mathbf{v}} f$, is computed by taking a dot product of \mathbf{v} with the gradient. Let's compute the gradient first:

$$
\begin{gathered}
\nabla f=\left(6 x-2 y^{2},-4 x y\right) \\
\nabla f(3,2)=(10,-24) .
\end{gathered}
$$

"In the direciton of the origin" means take \mathbf{v} to be the unit vector pointing from $(3,2)$ toward $(0,0)$. That is,

$$
\mathbf{v}=-(3,2) / \sqrt{13}
$$

Finally, then

$$
D_{\mathbf{v}} f(3,2)=\nabla f(3,2) \cdot \mathbf{v}=\frac{18}{\sqrt{13}}
$$

4. (25 points) (Ch 16 Review 45) Minimize $f(x, y)=x^{2}+y^{2}-2 x+2 y+2$ on the closed disk $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$. Indicate also points where local minima occur and the corresponding local minimum values.

Solution: We first look for places of vanishing gradient.

$$
\nabla f=(2 x-2,2 y+2)
$$

Therefore, we are led to the point $(1,-1)$ which is certainly in the disk. The value of the function here is $f(1,-1)=0$.
Next, we consider the boundary of the disk, which we parameterize as

$$
\gamma(t)=(2 \cos t, 2 \sin t)
$$

Plugging this into f, we get

$$
g(t)=4-4 \cos t+4 \sin t+2=6-4 \cos t+4 \sin t
$$

We now use Calculus I techniques: Note that $g^{\prime}=4 \sin t+4 \cos t$. This is zero when $\tan t=-1$. There are thus two critical points of interest on the circle corresponding to $t_{1}=-\tan ^{-1}(1)=-\pi / 4$ and $t_{2}=-\tan ^{-1}(1)+\pi=3 \pi / 4$.
It will be noted that $\cos t_{1}=1 / \sqrt{2}$ and $\sin t_{1}=-1 / \sqrt{2}$. Thus, $f \circ \gamma\left(t_{1}\right)=g\left(t_{1}\right)=$ $6-8 / \sqrt{2}=6-4 \sqrt{2}>0$.
Similarly, $\cos t_{2}=-1 / \sqrt{2}$ and $\sin t_{2}=1 / \sqrt{2}$, so $f \circ \gamma\left(t_{2}\right)=g\left(t_{2}\right)=6+4 \sqrt{2}>0$.
It follows that the absoute minimum value is 0 which is achieved at $(1,-1)$.
One might ask if $\gamma\left(t_{1}\right)=(\sqrt{2},-\sqrt{2})$ provides a local minimum, since t_{1} gives a local minimum for g. To see that this is not the case, we can compute the directional derivative at $\gamma\left(t_{1}\right)$ in the direction toward the origin, that is the direction $-\gamma\left(t_{1}\right) /\left\|\gamma\left(t_{1}\right)\right\|=(-1 / \sqrt{2}, 1 / \sqrt{2})$.
Note that $\nabla f \circ \gamma\left(t_{1}\right)=(2 \sqrt{2}-2,-2 \sqrt{2}+2)$. In particular,

$$
\nabla f \circ \gamma\left(t_{1}\right) \cdot \gamma\left(t_{1}\right) /\left\|\gamma\left(t_{1}\right)\right\|=-2+\sqrt{2}-2+\sqrt{2}=-2(2-\sqrt{2})<0
$$

This shows that the value of f decreases as one enters the disk from $\gamma\left(t_{1}\right)$.
Alternatively, one can observe that $f(x, y)=(x-1)^{2}+(x+1)^{2}$ which is the standard form for a paraboloid with vertex at $(1,-1)$. From this, everything asserted above is clear.

