MAT 2401 Final Exam: (sample)

1. (20 points) (Chapter 14 Review 43) Calculate the curvature of the image curve as a function of t if

$$
\mathbf{r}(t)=(\cos (3 t),-4 t, \sin (3 t))
$$

Solution:

$$
\begin{gathered}
\mathbf{r}^{\prime}=(-3 \sin (3 t),-4,3 \cos (3 t)) \\
\gamma(s)=(\cos (3 s / 5),-4 s / 5, \sin (3 s / 5)) \\
\ddot{\gamma}(s)=-(9 / 25)(\cos (3 s / 5), 0, \sin (3 s / 5)) \\
\kappa=9 / 25
\end{gathered}
$$

2. (20 points) (Chapter 15 Review 43) The plane $y=2$ intersects the graph of $f(x, y)=$ $2 x^{2}+3 x y$ in a curve. Find a parameterization of the line tangent to the intersection curve at $(1,2,8)$.

Solution: We can parameterize the curve as a function of $t=x$:

$$
\mathbf{r}(t)=\left(t, 2,2 t^{2}+6 t\right)
$$

We are interested in the tangent line at $t=1$:

$$
\ell(t)=(1,2,8)+t(1,0,10)
$$

3. (20 points) (Chapter 16 Review 41) Classify all critical points of

$$
f(x, y)=x^{3}+y^{3}-18 x y
$$

Solution: We find the zeros of the gradient to determine the critical points.

$$
D f=\left(3 x^{2}-18 y, 3 y^{2}-18 x\right)=3\left(x^{2}-6 y, y^{2}-6 x\right)
$$

Substituting $y=x^{2} / 6$ into $3 y^{2}-18 x=0$, we get $x^{4} / 12-18 x=0$ or $x=0$ or $x=6$. These values lead to critical points at $(0,0)$ and $(6,6)$.
To determine the nature of the critical points, we compute the Hessian:

$$
D^{2} f=\left(\begin{array}{cc}
6 x & -6 \\
-6 & 6 y
\end{array}\right)
$$

Thus, $\operatorname{det} D^{2} f(0,0)=-36<0$, so $(0,0)$ is a saddle point. There are some directions in which the value of f increases and some in which it decreases. On the othe rhand, det $D^{2} f(6,6)=36^{2}-36>0$, so this is either a local min or a local max. In fact, $f_{x x}(6,6)=36>0$, so we have a local min at $(6,6)$.
4. (20 points) (Chapter 17 Review 19) Evaluate

$$
\int_{V} x y z d x d y d z
$$

Where V is the region boundef by $z=2-y^{2}, x=0, y=0$, and $y=x$.

Solution: The region is a wedge shaped region in the first octant. We can write the integral as an iterated integral as follows:

$$
\begin{aligned}
\int_{0}^{\sqrt{2}} \int_{0}^{y} \int_{0}^{2-y^{2}} x y z d z d x d y & =\int_{0}^{\sqrt{2}} \int_{0}^{y} x y\left(2-y^{2}\right)^{2} / 2 d x d y \\
& =\int_{0}^{\sqrt{2}} y^{3}\left(2-y^{2}\right)^{2} / 4 d y \\
& =\int_{0}^{\sqrt{2}} y^{3}\left(4-4 y^{2}+y^{4}\right) / 4 d y \\
& =[4-(2 / 3) 8+16 / 8] / 4=1 / 6
\end{aligned}
$$

5. (20 points) (Chapter 18 Review 21) Let Γ be the boundary of the rectangle $[0,2] \times[0,1]$. Let $\mathbf{v}=\left(x-2 y^{2}, 2 x y\right)$ on this curve and T its counterclockwise unit tangent vector. Calculate

$$
\int_{\Gamma} \mathbf{v} \cdot T .
$$

Solution: One can evalute this integral directly by paremeterizing the four sides of the rectangle and computing four line integrals, or one can use Green's theorem. I will use Gauss' (divergence) Theorem:
Let the integral be I, let R be the rectangular region bounded by Γ, and let n be the outward unit normal to R. Then rotating \mathbf{v} and T clockwise by $\pi / 2$, we get

$$
\begin{aligned}
I & =\int_{\Gamma}\left(2 x y, 2 y^{2}-x\right) \cdot n \\
& =\int_{R} \operatorname{div}\left(2 x y, 2 y^{2}-x\right) \\
& =\int_{R}(2 y+4 y) \\
& =\int_{0}^{2} \int_{0}^{1} 6 y d y d x \\
& =6
\end{aligned}
$$

