This exam covers chapters 1 and 2 of Brannon and Boyce. Everything on the exam pertains to *a single first order equation*. It can also be summarized under four headings:

- 1. single first order equations
- 2. modeling
- 3. numerical methods
- 4. existence/uniqueness

As an expanded study outline is as follows:

- 1. single first order equations
 - (a) FTC
 - (b) first order linear
 - (c) separable
 - (d) exact
 - (e) autonomous
- 2. existence/uniqueness
 - (a) linear
 - (b) nonlinear
- 3. modeling
 - (a) mixing/flow problems
 - (b) exponential growth/decay (interest/population/radiation)
 - (c) Newton's law of cooling
- 4. numerical methods
 - (a) slope fields
 - (b) Euler method
 - (c) improved Euler method
 - (d) Runge-Kutte method
 - (e) phase diagram (autonomous)

1. (17 points) (1.2.9) Solve the following ODE for y = y(t):

$$2y' + y = 3t.$$

Solution: This is a linear first order equation y'+p(t)y = 3t/2. Using the integrating factor $\mu = \exp(\int^t p) = \exp(t/2)$, we write

$$(ye^{t/2})' = (3t/2)e^{t/2}.$$

Integrating both sides from t_0 to t, we get

$$ye^{t/2} - y(t_0)e^{t_0/2} = \frac{3}{2} \int_{t_0}^t \tau e^{\tau/2} d\tau$$
$$= \frac{3}{2} \left[\left(2\tau e^{\tau/2} \right)_{t_0}^t - \int_{t_0}^t 2e^{\tau/2} d\tau \right]$$
$$= 3te^{t/2} - 3t_0e^{t_0/2} - 6e^{t/2} + 6e^{t_0/2}$$

Thus,

$$y(t) = 3t - 6 + (y_0 - 3t_0 + 6)e^{t_0/2}e^{-t/2},$$

or alternatively $y(t) = 3t - 6 + ce^{-t/2}$ where c is a constant.

2. (17 points) (2.1.10) Solve the initial value problem (IVP) for y = y(x):

$$\begin{cases} y' = (1 - 2x)/y \\ y(1) = -2. \end{cases}$$

Solution: This is a separable equation yy' = 1 - 2x. Integrating both sides from 1 to x, we find

$$\frac{1}{2}y^2 - 2 = x - 1 - x^2 + 1 = x - x^2.$$

Thus, $y = -\sqrt{2(2-x)(x+1)}$ for $-1 < x < 2.$

3. (17 points) (2.2.4) A tank contains 200 gallons of water with 100 lbs of salt in solution. Solution with 1 lb of salt per gallon is added at 3 gal per minute. Assume instantaneous mixing and an outflow of the resulting mix at 2 gal per minute. Find the concentration of salt as a function of time and the limiting concentration as time tends to ∞ .

Solution: Let S = S(t) be the amount of salt in the tank at time t. Then

$$\begin{cases} S' = 3 - \frac{S}{200+t} \cdot 2\\ S(0) = 100. \end{cases}$$

The ODE is linear with integrating factor

$$\mu = e^{\int^t \frac{2}{200+t}} = e^{\ln(200+t)^2} = (200+t)^2.$$

Thus, we get

$$[(200+t)^2 S]' = 3(200+t)^2.$$

Integrating both sides from 0 to t, we get

$$(200+t)^2 S - 200^2 \cdot 100 = (200+t)^3 - 200^3.$$

Thus,

$$S = \frac{1}{(200+t)^2} \left[(200+t)^3 - 100 \cdot 200^2 \right]$$
$$= 200 + t - \frac{100(200)^2}{(200+t)^2}.$$

To get the concentration C = C(t) we divide the amount of salt by the total volume of solution, 200 + t:

$$C(t) = 1 - \frac{100(200)^2}{(200+t)^3}.$$

We then have

$$\lim_{t \nearrow \infty} C(t) = 1,$$

as one would expect since the concentration of the inflow is 1 lb per gallon.

- 4. Discuss the implications of the existence and uniqueness theorems for the following equation and IVP. (In each case, y = y(t).)
 - (a) (8 points) (2.3.3)

(b) (9 points) (2.3.12)

$$\begin{cases} y' + y \tan t = \sin t \\ y(\pi) = 0. \end{cases}$$
$$y' = \frac{y \cot t}{1 + y}.$$

Solution:

- (a) This equation is linear, and it will have a unique solution on any interval for which the coefficients are C^1 . The only singularities are those of $\tan t$, and the maximum interval containing $t = \pi$ on which $\tan t$ is regular is the interval $(\pi/2, 3\pi/2)$. Therefore, this is the interval on which the linear existence and uniqueness theorem guarantees the existence of a unique solution.
- (b) This is a nonlinear equation to which the nonlinear existence and uniqueness theorem applies. This theorem relies on the regularity of the function

$$f(y,t) = \frac{y\cot t}{1+y}$$

jointly in y and t. The singularities of this function lie along the union of the horizontal line y = -1 and the vertical lines $t = k\pi$ for $k = 0, \pm 1, \pm 2, \ldots$ For each point (t_0, y_0) in the complement of these lines, there is some time interval $(t_0 - \epsilon, t_0 + \epsilon)$ on which the ODE has a unique solution. This is all we can say from the nonlinear existence/uniqueness theorem.

5. (17 points) (2.4.2) Find and classify the equilibrium points of the ODE $y' = 3y + y^2$.

Solution: Let $f(y) = 3y + y^2 = y(3 + y)$. The equilibrium point at $y_* = 0$ has f'(0) = 3 > 0. Therefore, this is an unstable source.

The equilibrium point at $y_* = -3$ has f'(-3) = -3 < 0. Therefore, this is a stable sink.

6. (2.6.3) Consider the IVP

$$\begin{cases} y' = 2y - 3t\\ y(0) = 1. \end{cases}$$

- (a) (6 points) Sketch the slope field for the ODE and indicate the solution graphically.
- (b) (6 points) Find the Euler approximation for y(0.2) with step size h = 0.1.
- (c) (5 points) Find the improved Euler approximation for y(0.1) with step size h = 0.1.

This last number gives the desired approximation $y(0.2) \approx 1.41$.

(c) We can determine the two relevant slopes from the previous calculation: $m_0 = 2$ and $m_1 = 2.4 - 0.3 = 2.1$. Thus, the average is

$$m = \frac{4.1}{2} = 2.05$$

and the improved Euler approximation (first step) is

 $y(0.1) \approx \tilde{y}_1 = 1 + 2.05(0.1) = 1.205.$