This exam covers chapters 1 and 2 of Brannon and Boyce. Everything on the exam pertains to a single first order equation. It can also be summarized under four headings:

1. single first order equations
2. modeling
3. numerical methods
4. existence/uniqueness

As an expanded study outline is as follows:

1. single first order equations
(a) FTC
(b) first order linear
(c) separable
(d) exact
(e) autonomous
2. existence/uniqueness
(a) linear
(b) nonlinear
3. modeling
(a) mixing/flow problems
(b) exponential growth/decay (interest/population/radiation)
(c) Newton's law of cooling
4. numerical methods
(a) slope fields
(b) Euler method
(c) improved Euler method
(d) Runge-Kutte method
(e) phase diagram (autonomous)
\qquad
5. (17 points) (1.2.9) Solve the following ODE for $y=y(t)$:

$$
2 y^{\prime}+y=3 t .
$$

Solution: This is a linear first order equation $y^{\prime}+p(t) y=3 t / 2$. Using the integrating factor $\mu=\exp \left(\int^{t} p\right)=\exp (t / 2)$, we write

$$
\left(y e^{t / 2}\right)^{\prime}=(3 t / 2) e^{t / 2}
$$

Integrating both sides from t_{0} to t, we get

$$
\begin{aligned}
y e^{t / 2}-y\left(t_{0}\right) e^{t_{0} / 2} & =\frac{3}{2} \int_{t_{0}}^{t} \tau e^{\tau / 2} d \tau \\
& =\frac{3}{2}\left[\left.\left(2 \tau e^{\tau / 2}\right)\right|_{t_{0}} ^{t}-\int_{t_{0}}^{t} 2 e^{\tau / 2} d \tau\right] \\
& =3 t e^{t / 2}-3 t_{0} e^{t_{0} / 2}-6 e^{t / 2}+6 e^{t_{0} / 2}
\end{aligned}
$$

Thus,

$$
y(t)=3 t-6+\left(y_{0}-3 t_{0}+6\right) e^{t_{0} / 2} e^{-t / 2},
$$

or alternatively $y(t)=3 t-6+c e^{-t / 2}$ where c is a constant.
\qquad
2. (17 points) (2.1.10) Solve the initial value problem (IVP) for $y=y(x)$:

$$
\left\{\begin{array}{l}
y^{\prime}=(1-2 x) / y \\
y(1)=-2
\end{array}\right.
$$

Solution: This is a separable equation $y y^{\prime}=1-2 x$. Integrating both sides from 1 to x, we find

$$
\frac{1}{2} y^{2}-2=x-1-x^{2}+1=x-x^{2}
$$

Thus, $y=-\sqrt{2(2-x)(x+1)}$ for $-1<x<2$.
\qquad
3. (17 points) (2.2.4) A tank contains 200 gallons of water with 100 lbs of salt in solution. Solution with 1 lb of salt per gallon is added at 3 gal per minute. Assume instantaneous mixing and an outflow of the resulting mix at 2 gal per minute. Find the concentration of salt as a function of time and the limiting concentration as time tends to ∞.

Solution: Let $S=S(t)$ be the amount of salt in the tank at time t. Then

$$
\left\{\begin{array}{l}
S^{\prime}=3-\frac{S}{200+t} \cdot 2 \\
S(0)=100
\end{array}\right.
$$

The ODE is linear with integrating factor

$$
\mu=e^{\int^{t} \frac{2}{200+t}}=e^{\ln (200+t)^{2}}=(200+t)^{2}
$$

Thus, we get

$$
\left[(200+t)^{2} S\right]^{\prime}=3(200+t)^{2}
$$

Integrating both sides from 0 to t, we get

$$
(200+t)^{2} S-200^{2} \cdot 100=(200+t)^{3}-200^{3} .
$$

Thus,

$$
\begin{aligned}
S & =\frac{1}{(200+t)^{2}}\left[(200+t)^{3}-100 \cdot 200^{2}\right] \\
& =200+t-\frac{100(200)^{2}}{(200+t)^{2}}
\end{aligned}
$$

To get the concentration $C=C(t)$ we divide the amount of salt by the total volume of solution, $200+t$:

$$
C(t)=1-\frac{100(200)^{2}}{(200+t)^{3}} .
$$

We then have

$$
\lim _{t / \infty} C(t)=1,
$$

as one would expect since the concentration of the inflow is 1 lb per gallon.
4. Discuss the implications of the existence and uniqueness theorems for the following equation and IVP. (In each case, $y=y(t)$.)
(a) (8 points) (2.3.3)

$$
\left\{\begin{array}{l}
y^{\prime}+y \tan t=\sin t \\
y(\pi)=0
\end{array}\right.
$$

(b) (9 points) (2.3.12)

$$
y^{\prime}=\frac{y \cot t}{1+y}
$$

Solution:

(a) This equation is linear, and it will have a unique solution on any interval for which the coefficients are C^{1}. The only singularities are those of $\tan t$, and the maximum interval containing $t=\pi$ on which $\tan t$ is regular is the interval $(\pi / 2,3 \pi / 2)$. Therefore, this is the interval on which the linear existence and uniqueness theorem guarantees the existence of a unique solution.
(b) This is a nonlinear equation to which the nonlinear existence and uniqueness theorem applies. This theorem relies on the regularity of the function

$$
f(y, t)=\frac{y \cot t}{1+y}
$$

jointly in y and t. The singulariities of this function lie along the union of the horizontal line $y=-1$ and the vertical lines $t=k \pi$ for $k=0, \pm 1, \pm 2, \ldots$. For each point $\left(t_{0}, y_{0}\right)$ in the complement of these lines, there is some time interval $\left(t_{0}-\epsilon, t_{0}+\epsilon\right)$ on which the ODE has a unique solution. This is all we can say from the nonlinear existence/uniqueness theorem.
\qquad
5. (17 points) (2.4.2) Find and classify the equilibrium points of the $\mathrm{ODE} y^{\prime}=3 y+y^{2}$.

Solution: Let $f(y)=3 y+y^{2}=y(3+y)$. The equilibrium point at $y_{*}=0$ has $f^{\prime}(0)=3>0$. Therefore, this is an unstable source.
The equilibrium point at $y_{*}=-3$ has $f^{\prime}(-3)=-3<0$. Therefore, this is a stable sink.
\qquad
6. (2.6.3) Consider the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=2 y-3 t \\
y(0)=1
\end{array}\right.
$$

(a) (6 points) Sketch the slope field for the ODE and indicate the solution graphically.
(b) (6 points) Find the Euler approximation for $y(0.2)$ with step size $h=0.1$.
(c) (5 points) Find the improved Euler approximation for $y(0.1)$ with step size $h=0.1$.

Solution:

(a)

Note that I've drawn in bold the line $y=3(1+2 t) / 4$ which is a solution of the ODE though not the solution of the IVP which diverges (with greater rate of growth) from the line.
(b) $y_{1}=1+2(0.1)=1.2$.

$$
\begin{aligned}
y_{2} & =1.2+[2(1.2)-3(0.1)](0.1) \\
& =1.2+[2.4-0.3](0.1) \\
& =1.2+0.21 \\
& =1.41 .
\end{aligned}
$$

This last number gives the desired approximation $y(0.2) \approx 1.41$.
(c) We can determine the two relevant slopes from the previous calculation: $m_{0}=2$ and $m_{1}=2.4-0.3=2.1$. Thus, the average is

$$
m=\frac{4.1}{2}=2.05
$$

Name and section: \qquad
and the improved Euler approximation (first step) is

$$
y(0.1) \approx \tilde{y}_{1}=1+2.05(0.1)=1.205
$$

