
Math 2403, Exam 2 (practice) Name and section:

This exam covers chapter 3, chapter 7 (sections 1-4), and part of chapter 4 of Brannon
and Boyce. The exam covers some material on first order systems and second order linear
ODE. A more precise outline of topics you should know is the following:

1. first order systems

(a) basic defintions

(b) linear -vs- nonlinear

(c) linear existence and uniqueness

(d) homogeneous linear systems with constant coefficients

i. eigenvalue/eigenvector (straight line) solutions

ii. basis of real eigenvectors

iii. complex eigenvectors

iv. one dimensional eigenspace

v. general solution (in each case)

vi. phase diagram (in each case)

vii. stability classification of equilibria (in each case)

viii. names (saddle, stable sink, unstable source, stable spiral, etc.)

ix. asymptotic stability

(e) nonlinear systems

i. nonlinear existence and uniqueness theorem

ii. autonomous case

A. equilibrium points

B. linearization

C. phase plane diagram techniques

2. linear second order ODE

(a) homogeneous equations with constant coefficients

(b) equivalence with first order systems

(c) finding particular solutions with forcing

(d) general solutions (particular plus homogeneous)

3. modeling

(a) populations systems (logistic, competition, etc.)

(b) elementary oscillators
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1. (17 points) (3.2.8) Express the following system using vector/matrix notation.

{

x′ = 3x − 4y
y′ = x + 3y.

Solution: This system can be written as

(

x
y

)

′

=

(

3x − 4y
x + 3y

)

=

(

3 −4
1 3

) (

x
y

)

.

or simply

x′ =

(

3 −4
1 3

)

x.
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2. (17 points) (3.2.21) Give a first order system which is equivalent to the single ODE

y′′′ + 3y′′ − y = 0.

Solution: Letting x1 = y be one unknown in our system, we define two more un-
knowns by x2 = x′

1
and x3 = x′

2
. The equivalent first order system is then







x′

1
= x2

x′

2
= x3

x′

3
= −x1 − 3x3.

or simply

x′ =





0 1 0
0 0 1

−1 0 −3



x.
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3. (17 points) (3.3.11) Solve the linear system of ODEs

x′ =

(

−2 1
−5 4

)

x,

and plot the phase diagram.

Solution: The characteristic equation is λ2 − 2λ − 3 = (λ − 3)(λ + 1) = 0. For the
eigenvalue λ1 = −1, we have an eigenvectore v = (v1, v2)

T satisfying −v1 + v2 = 0.
One such vector is v = (1, 1)T . Similarly, for the eigenvalue λ2 = 3 we find an
eigenvector w = (1, 5)T . Therefore, the general solution is

x(t) = ae−t

(

1
1

)

+ be3t

(

1
5

)

.

This is a saddle (unstable):

-4 -2 2 4
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4. (3.5.6) Consider the linear system

x′ =

(

1 2
−5 −1

)

x,

(a) (6 points) Draw the phase diagram.

(b) (6 points) If a solution satisfies x(0) = (3, 2)T , then what can you say about

lim
t→∞

√

x1(t)2 + x2(t)2.

(c) (5 points) Classify the equilibrium point.

Solution:

(a) The characteristic equation is λ2 +9 = 0. Thus, the eigenvalues are ±3i and are
purely imaginary. Inspection of the direction field indicates the the trajecto-
ries/orbits are (noncircular) ellipses with major axis passing through the second
and fourth quadrants and are traversed by solutions in the clockwise direction:

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0
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(b) The solution passing through this point will be a clockwise parameterization of
an ellipse passing through (3, 2)T . As a consequence, the quantity in question,
which is the distance from x(t) to the origin will oscillate periodically between
some positive minimum and maximum values. Therefore, the limit does not

exist.

(c) The equilibrium point at the origin is called an elliptic periodic center.



Name and section:

5. (rabbits and foxes) Consider the system
{

r′ = 3r(2 − r − 4f)
f ′ = r − 2f

for two populations r and f which change over time.

(a) (8 points) Find any equilibrium populations for the system.

(b) (9 points) Linearize the system at each equilibrium point, and classify the local be-
havior there if possible. If linearization does not lead to a definitive characterization,
explain why.

Solution:

(a) We wish to solve the system 3r(2− r − 4f) = 0 and r − 2f = 0. From the first
equation r = 0 or r + 4f = 2. In the first case, the second equation implies
f = 0, so one equilibrium point is the origin where both populations are zero
for all time. In the second case, we find f = 1/3 and r = 2/3. Thus, the two
equilibrium points are

(

r∗
f∗

)

=

(

0
0

)

and

(

r∗
f∗

)

=

(

2/3
1/3

)

.

(b) Denoting the vector field defining the ODE by

F

(

r
f

)

=

(

3r(2 − r − 4f)
r − 2f

)

=

(

3(2r − r2 − 4rf)
r − 2f

)

,

we find

DF

(

r
f

)

=

(

3(2 − 2r − 4f) −12r
1 −2

)

.

Thus, for the equilibrium at the origin, the linearized system is

y′ =

(

6 0
1 −2

)

y.

The eigenvalues for the matrix DF (0, 0)T are 6 and −2. Since these have op-
posite signs, there is a saddle at the origin.

For the second equilibrium point, the linearized system is

y′ =

(

−2 −8
1 −2

)

y.

The characteristic equation in this case is λ2 + 4λ + 12 = 0. The roots are

λ =
−4 ±

√
16 − 48

2
= −2 ± 2

√
3i.
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This means the second equilibrium is a stable inward spiral. Checking the vector
field at a point (2/3, 1/3 + ǫ) where ǫ is a small positive number, we find the
second component of F is

r − 2f = −2ǫ < 0.

This means we have a clockwise spiral at (2/3, 1/3)T .
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6. (17 points) (4.3.8) Find the genearal solution of the ODE

2y′′ − 3y′ + y = 0.

Solution: This is a second order linear ODE with constant coefficients, and it is
homogeneous. Therefore, we look for solutions of the form

y(t) = eαt.

Plugging in, we obtain the characteristic equation

2α2 − 3α + 1 = (2α − 1)(α − 1) = 0.

Thus, the general solution is

y(t) = c1e
t/2 + c2e

t

where c1 and c2 are arbitrary constants.


