1. (a) (5 points) Solve the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=y^{2} \\
y(2)=1
\end{array}\right.
$$

(b) (5 points) Plot the solution you found in part (a).
(c) (5 points) What is the interval of definition of your solution you found in part (a)?
(d) (5 points) Plot the phase line for the ODE $y^{\prime}=y^{2}$.
\qquad
2. A series circuit contains a 2 Ohm resistor, a $1 / 48$ Fahrad capacitor, a 0.02 Henry inductor, and an adjustable power source.
(a) (10 points) If the initial charge on the capacitor is $1 / 16$ Coulomb and there is initially no current flowing in the circuit when the power source is switched on to 9 volts, what is the subsequent charge on the capacitor?
(b) (10 points) Does this physical system constitute an oscillator? Explain.
\qquad
3. Consider the system of ODEs

$$
\begin{aligned}
& y^{\prime}=y(5-y+z) \\
& z^{\prime}=-z(5-z+y)^{2} .
\end{aligned}
$$

(a) (10 points) Linearize at $y_{*}=z_{*}=0$, and draw the phase diagram for the linerized system.
(b) (10 points) A solution of the original nonlinear system starts with $y(0)=0.1$ and $z(0)=0$. Determine the limit

$$
\lim _{t / \infty} y(t) .
$$

Name and section: \qquad
4. (20 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y=\cos 3 t \\
y(0)=0=y^{\prime}(0)
\end{array}\right.
$$

determine the period of the beats.

Name and section: \qquad
5. (20 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}-y=t \\
y(0)=0=y^{\prime}(0)
\end{array}\right.
$$

by the method of Laplace transforms.

