\qquad

1. (a) (5 points) Solve the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=y^{2} \\
y(2)=1
\end{array}\right.
$$

(b) (5 points) Plot the solution you found in part (a).
(c) (5 points) What is the interval of definition of your solution you found in part (a)?
(d) (5 points) Plot the phase line for the ODE $y^{\prime}=y^{2}$.

Solution:

(a) Integrating $y^{\prime} / y^{2}=1$, we find $-1 / y+1=x-2$ or

$$
y=\frac{1}{3-x} .
$$

(b)

(c) $(-\infty, 3)$.
(d) This is and autonomous ODE with equilibrium at $y=0$. The phase line is
2. A series circuit contains a 2 Ohm resistor, a $1 / 48$ Fahrad capacitor, a 0.02 Henry inductor, and an adjustable power source.
(a) (10 points) If the initial charge on the capacitor is $1 / 16$ Coulomb and there is initially no current flowing in the circuit when the power source is switched on to 9 volts, what is the subsequent charge on the capacitor?
(b) (10 points) Does this physical system constitute an oscillator? Explain.

Solution:

(a) The equation for the charge $q=q(t)$ is

$$
0.02 q^{\prime \prime}+2 q^{\prime}+48 q=9
$$

We consider this equation with the initial conditions $q(0)=1 / 16$ and $q^{\prime}(0)=0$. The characteristic equation $0.02 \alpha^{2}+2 \alpha+48=0$ has solutions $\alpha=(-2 \pm$ $\sqrt{4-3.84}) / 0.94=(-2 \pm \sqrt{0.16}) / 0.04=-50 \pm 1$. We notice that there are two negative characteristic values, so the solution of the homogeneous equation is

$$
q_{h}=a e^{-51 t}+b e^{-49 t}
$$

A particular solution is given by the constant $q_{p}=9 / 48=3 / 16$. Thus, $q=$ $a e^{-51 t}+b e^{-49 t}+3 / 16$ and we proceed to determine the coefficients a and b to satisfy the initial conditions.

$$
\left\{\begin{array}{l}
a+b=-1 / 8 \\
51 a+49 b=0
\end{array}\right.
$$

That is, $a=(-49 / 8) /(49-51)=49 / 16$ and $b=(51 / 8) /(-2)=-51 / 16$. Thus,

$$
q(t)=\frac{49 e^{-51 t}-51 e^{-49 t}+3}{16}
$$

(b) Since the coefficients in the operator

$$
L[q]=0.02 q^{\prime \prime}+2 q^{\prime}+48 q
$$

are all positive, we are modelling this system as a (overdamped) damped oscillator which is being forced with a constant force.
\qquad
3. Consider the system of ODEs

$$
\begin{aligned}
& y^{\prime}=y(5-y+z) \\
& z^{\prime}=-z(5-z+y)^{2} .
\end{aligned}
$$

(a) (10 points) Linearize at $y_{*}=z_{*}=0$, and draw the phase diagram for the linerized system.
(b) (10 points) A solution of the original nonlinear system starts with $y(0)=0.1$ and $z(0)=0$. Determine the limit

$$
\lim _{t / \infty} y(t) .
$$

Solution:

(a) The Jacobian of the vector field $F=\left(y(5-y+z),-z(5-z+y)^{2}\right)^{T}$ is given by

$$
D F=\left(\begin{array}{cc}
5-2 y+z & y \\
-2 z(5-z+y) & -(5-z+y)^{2}+2 z(5-z+y)
\end{array}\right) .
$$

Thus the linearized system at the origin is

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
5 & 0 \\
0 & -25
\end{array}\right) \mathbf{x} .
$$

The eigenvalues are clearly $\lambda=5$ (exponential growth in the direction \mathbf{e}_{1}) and $\lambda=-25$ (exponential decay in the direction \mathbf{e}_{2}). Thus, we have a saddle point:

\qquad
(b) If we start with $z=0$, then the second equation indicates $z(t)=0$ for all t by the existence and uniqueness theorem. Thus, the first equation becomes logistic for y :

$$
y^{\prime}=y(5-y) .
$$

Since the carrying capacity $y_{*}=5$ is an attractive equilibrium for this autonomous system, we see that

$$
\lim _{t / \infty} y(t)=5 .
$$

\qquad
4. (20 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+4 y=\cos 3 t \\
y(0)=0=y^{\prime}(0)
\end{array}\right.
$$

determine the period of the beats.

Solution:

$$
\begin{gathered}
y_{h}=a \cos 2 t+b \sin 2 t \\
y_{p}=A \cos 3 t+B \sin 3 t \\
L\left[y_{p}\right]=-5 A \cos 3 t-5 B \sin 3 t=\cos 3 t
\end{gathered}
$$

Thus,

$$
y(t)=a \cos 2 t+b \sin 2 t-\frac{1}{5} \cos 3 t
$$

for some constants a and b.

$$
y(0)=a-1 / 5=0 \quad \text { and } \quad y^{\prime}(0)=2 b=0 .
$$

Therefore,

$$
y(t)=\frac{1}{5}(\cos 2 t-\cos 3 t) .
$$

Setting

$$
\theta=\frac{2 t+3 t}{2} \quad \text { and } \quad \phi=\frac{2 t-3 t}{2}
$$

and using the cosine addition formula, we find

$$
y(t)=\frac{2}{5} \sin \left(\frac{5 t}{2}\right) \sin \left(\frac{t}{2}\right) .
$$

The beats are determined by the sine function of lower frequency. That would be frequency $1 / 2$. And the period is therefore

$$
\frac{2 \pi}{1 / 2}=4 \pi
$$

\qquad
5. (20 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+2 y^{\prime}-y=t \\
y(0)=0=y^{\prime}(0)
\end{array}\right.
$$

by the method of Laplace transforms.

Solution: Consulting the table of Laplace transforms, we find $\mathcal{L}[t]=1 / s$. Thus, given the homogeneous boundary values of the problem, the Laplace transform of the initial value problem is

$$
s^{2} Y+2 s Y-Y=\frac{1}{s^{2}}
$$

Therefore,

$$
Y=\frac{1}{s^{2}(s+1+\sqrt{2})(s+1-\sqrt{2})}
$$

By partial fractions, we find

$$
Y=-\frac{2 s+1}{s^{2}}+\frac{2 s+5}{s^{2}+2 s-1}=-\frac{2}{s}-\frac{1}{s^{2}}+\frac{4-3 \sqrt{2}}{4(s+1+\sqrt{2})}+\frac{4+3 \sqrt{2}}{4(s+1-\sqrt{2})} .
$$

Consulting the table (shifting in s), we find

$$
Y=-\frac{2}{s}-\frac{1}{s^{2}}+\frac{4-3 \sqrt{2}}{4} \mathcal{L}\left[e^{-(1+\sqrt{2}) t}\right]+\frac{4+3 \sqrt{2}}{4} \mathcal{L}\left[e^{-(1-\sqrt{2}) t}\right]
$$

Therefore,

$$
y=-2-t+\frac{4-3 \sqrt{2}}{4} e^{-(1+\sqrt{2}) t}+\frac{4+3 \sqrt{2}}{4} e^{-(1-\sqrt{2}) t} .
$$

