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1 The Question

I mentioned in class that given two vectors v1 and v2 in R
3, the area of the parallelogram

spanned by v1 and v2 is √
AT A (1)

where A is the 3 × 2 matrix with v1 and v2 in the columns. More generally, if v1, . . . , vk are
vectors in R

n, then they span a k-dimensional parallelopiped
{

k
∑

j=1

ajvj : a1, . . . , ak ∈ [0, 1]

}

in R
n, and the k-dimensional measure of that set is given by the same formula (1) if we take

A to be the n×k matrix with v1, . . . , vk in the columns. In particular, this will work for two
vectors v1 and v2 to give the area of a parallelogram in a Euclidean space of any dimension.

One student, Yong Jea Kim, asked me to justify these assertions.
Using integration, one can extend these formulas to areas/lower dimensional measures of

a variety of sets in Euclidean spaces of higher dimension. I’ll record some of these formula
at the end.

2 Area in R
3

We will take as a definition the formula

Area(P) = |det P | (2)

Where
P = {ap1 + bp2 : 0 ≤ a, b ≤ 1} ⊂ R

2

denotes the planar parallelogram spanned by two vectors p1 and p2 in R
2, and P denotes

the 2 × 2 matrix with those two vectors as columns.
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Let us begin with a simple justification in the initial case k = 2 and n = 3. In this special
case,

det AT A =

∣

∣

∣

∣

‖v1‖2 v1 · v2

v1 · v2 ‖v2‖2

∣

∣

∣

∣

= ‖v1‖2‖v2‖2 − (v1 · v2)
2. (3)

Notice that in the last expression, some decidedly geometric quantities appear. Namely, ‖vj‖
is the length of the vector vj for j = 1, 2, and v1 · v2 is the product of the two lengths and
the cosine of the angle between the vectors.

Now, let us imagine P to be the parallelogram spanned by v1 and v2 in the two dimensional
plane V = span{v1, v2} considered as an abstract vector space. There is some orthonormal
basis for V . For example, we could apply the Gram-Schmidt procedure to {v1, v2} to get
one. We don’t need to write down this basis explicitly; it is just enough to know it’s there.

Next, given the orthonormal basis {u1, u2} for V , we can define a linear transforma-
tion T : V → V by assigning images for u1 and u2. Let us consider the particular linear
transformation with

T (u1) = v1 and T (u2) = v2.

Notice that there is a square Q spanned by u1 and u2 in V , and the parallogram P in which
we are interested is the image T (Q) of Q under the transformation T .

We can express T in coordinates. In particular, let us take the basis {u1, u2} of V . Then
there is a matrix

P =

(

w11 w12

w21 w22

)

associated with the linear transformation T . We know the absolute value of the determinant
of that matrix is the area of P. Therefore,

[Area(P)]2 = (w11w22 − w12w21)
2 = w2

11w
2
22 − 2w11w22w12w21 + w2

12w
2
21.

On the other hand, what is the meaning of the matrix P = (wij)? One answer is that
the columns give the coordinates of v1 and v2 in the basis {u1, u2}. This means

v1 = w11u1 + w21u2 and v1 = w12u1 + w22u2.

Given that u1 and u2 are orthonormal, we can easily compute the geometric quantities
appearing in (3) in terms of the entires wij. That computation is as follows:

‖v1‖2‖v2‖2 − (v1 · v2)
2 = (w2

11 + w2
21)(w

2
12 + w2

22) − (w11w12 + w21w22)
2

= w2
11w

2
22 + w2

21w
2
12 − 2w11w12w21w22

= (detP)2
.

Thus, we have shown by explicit calculation that formula (1) holds in the special case where
we have two vectors in R

3.
This seems a little long, but I have given all the details. If you understand the background,

it’s really just a couple lines of calculations.
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3 Other Dimensions

The general problem is a little more tricky, and there may be a simpler way to see it than the
following. However, we will not use anything other than material covered in class. Again,
we take the full dimension definition of measure as given:

Hk(P) = |det(P )|

where Hk is k-dimensional measure, P is a k dimensional parallelopiped in R
k, and P is the

k × k matrix whose columns are the vectors spanning P.
The approach is similar to the one in the last section, but we will not make an explicit

calculation but use instead some important facts we learned about AT . To be precise,
remember that given vectors v1, . . . , vk ∈ R

n which we take as the columns of a matrix A,
the operation of exchanging “inner products” for “coordinates” with respect to {v1, . . . , vk}
is an invertible linear operation.

To be more precise, let V = span{v1, . . . , vk}, and let us assume {v1, . . . , vk} is a basis.
(The situation in which {v1, . . . , vk} is linearly dependent can be considered as a degenerate
special case.) We know there is a linear coordinate transformation χ : V → R

k which gives
coordinates. That is, given a vector w ∈ V , we get a vector χ(w) in R

k whose entries are
the coordinates of w with respect to the basis {v1, . . . , vk}. On the other hand, there is
another vector in R

k which can be associated with w. That vector has as its entries the
inner products w · v1, w · v2, . . . , w · vk. This also clearly defines a linear transformation from
V to R

k. In fact, this linear transformation extends to all of R
n and is then precisely the

transformation given by multiplication by AT .
We considered these transformations carefully in class, and they were closely related to

the projection operator onto V . In particular, they are each invertible on V and we observed
the following:

The linear transformation from R
k to R

k given by multiplication by AT A takes

the coordinates of a vector in V and returns the inner products with respect to

{v1, . . . , vk}.
Moreover, the linear transformation from R

k to R
k given by multiplication by

(AT A)−1 takes the vector of inner products with respect to {v1, . . . , vk} and returns

the coordinates of a vector in V .

Since AT w gives the inner products, we see that

A(AT A)−1AT w = w

for each w in V . (And the same formula gives the projection onto V defined on all of R
n.)

If we understand this, we are in a position to give the general argument. As before, we
consider an orthonormal basis {u1, . . . , uk} for V , and the linear transformation T : V → V
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for which T (uj) = vj for j = 1, . . . k. We express this linear transformation with respect to
the basis {u1, . . . , uk} obtaining a k × k matrix P . We then know

[Hk(P)]2 = [det P ]2.

Since coordinates in the basis {u1, . . . , uk} are just the same as inner products, we see that
the i, j-th entry of P is vj · ui. If we let Q denote the matrix with u1, . . . , uk in the columns,
then another way to say this is that P = QT A. We note also that P T = AT Q.

This agrees with what we did before. But now we will do something a little different.
Let’s complete {u1, . . . , uk} to a basis for R

n by adjoining n − k more orthonormal vectors
uk+1, . . . , un. Denoting the n × (n − k) matrix with uk+1, . . . , un in the columns by Q̃, we
see that the n × n block matrix Q̄ = (Q|Q̃) is an orthogonal matrix. We will also consider
the n × n block matrix Ā = (A|Q̃). It is easy to check that

Q̄T Ā =

(

QT

Q̃T

)

(A|Q̃) =

(

P 0

Q̃T A I

)

=

(

P 0
0 I

)

where I represents the (n− k)× (n− k) identity matrix. It follows that det(Q̄T Ā) = det P .
Similarly,

ĀT Q̄ =

(

P T AT Q̃

0 I

)

=

(

P T 0
0 I

)

,

and det(ĀT Q̄) = det P T = det P .
Therefore,

[det P ]2 = det(ĀT Q̄)det(Q̄T Ā) = det(ĀT Q̄Q̄T Ā)

by the product formula for determinants. Since Q̄ is an orthogonal matrix, the middle factors
are inverses, and

[det P ]2 = det(ĀT Ā).

Finally,

ĀT Ā =

(

AT

Q̃T

)

(A|Q̃) =

(

AT A 0
0 I

)

.

Thus, [Hk(P)]2 = det(ĀT Ā) = det(AT A), which is what we wanted to prove.

4 Applications

These formulas were mentioned in class, and are straightforward applications of the dis-
cussion above when applied to the definition of integration. In each case, the area of a
parallelopiped acts as a scaling factor for a measure.

4



1. If f : Ω → R
2 is differentiable function defined on an open set Ω ⊂ R

2 and f has
derivative

Df =

(

∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y

)

,

then the area of f(Ω) is given by

∫

Ω

|det Df |.

This means that in the particular case in which f is a linear function given by multi-
plication by a 2 × 2 matrix A, then

Area f(Ω) = |det A|Area (Ω).

2. If f : Ω → R
n is a differentiable function defined on an open set Ω ⊂ R

k and the
derivative of f is the n × k matix

Df =

(

∂fi

∂xj

)

,

then

Hk[f(Ω)] =

∫

Ω

σ

where σ = σ(x) is the scaling factor

σ =
√

det (Df)T Df.

5


