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In the main, section 14.6 of Thomas’ Calculus (fourteenth edition) is well-written,
and I’m not going to give anything like a full exposition here. On the other hand,
problems 62 and 63 of the Chapter 14 Practice Problems bring out some ambiguities
which should perhaps be addressed. We’ll stick to two variables. The first order
Taylor approximation in that case can be written as

f(x, y) ∼ f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0).

The function on the right

L(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0), (1)

is identified as the linearization on page 857, and on the next page the error is
implicitly defined as the difference

E(x, y) = f(x, y) − L(x, y).

Finally, the differential is defined at the bottom of page 858 by

df =
∂f

∂x
(x0, y0) dx +

∂f

∂y
(x0, y0) dy. (2)

This is all somewhat standard, though I would present it somewhat differently. Let
me mention some aspects of my perspective, which especially make sense if one is
familiar with linear algebra.

It will be noted that the linearization appearing in (1) is not a linear function. I
would call it the affine approximation of f and perhaps write

α(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0). (3)
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The differential, on the other hand, is really an honest linear function df : R
2 → R

1

given by a dot product. It’s just that the variables have been given sort of weird
names. To make it look more familiar, we can write it like this:

df(u, v) = Df(x0, y0) · (u, v) =
∂f

∂x
(x0, y0) u +

∂f

∂y
(x0, y0) v.

Note that df(0, 0) = 0 while L(0, 0) = f(x0, y0) does not necessarily vanish.

Exercise 1 (Recall that) a linear function L : R
n → R

m is one for which L(av +
bw) = aL(v) + bL(w) for all a, b ∈ R and all v,w ∈ R

n. Show that any such linear
function L is given by matrix multiplication

L(v) = Av

where A is an m× n matrix and in the special case when m = 1 this reduces to a dot
product. Conclude that the image under L of the zero vector in R

n is the zero vector
in R

m. In particular, when m = 1, L(0, 0, . . . , 0) = 0, so the function L called the
linearization above is not linear.

An affine function is a linear function plus a shift: α(v) = L(v)+w0; if L : R
n → R

m,
then v ∈ rn and w0 ∈ rm in this formula.

In any case, one is typically interested in using the values of the affine approxima-
tion (linearization) to approximate the values of the function, but problems 14.6.51-56
implicitly introduce a different aspect/kind of approximation and the Practice Prob-
lems 59-64, and 62 and 63 in particular, on page 893 make this explicit. Problem
62 mentions the error in estimating the area of an ellipse. This suggests, on
the one hand, that one estimates the error using the affine approximation based on
estimate near the top of page 858 involving the second partials, and that is sort of
fine. Let us carry out the problem from this point of view.

The formula for the area of the ellipse

x2

a2
+

y2

b2
= 1

is f(a, b) = πab. Therefore, the affine approximation is given by

α(a, b) = πa0b0 + Df(a0, b0) · (a − a0, b − b0) = π[a0b0 + b0(a − a0) + a0(b − b0)].

We are told that a = 10 cm and b = 16 cm to the nearest millimeter. A natural
interpretation of this information is that there are some actual values a0 and b0, and
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these are measured values associated with some potential error in measurement
for which

|a − a0| < 0.1 cm and |b − b0| < 0.1 cm.

From this, we have all the information needed to compute the error in the affine
approximation/estimation of the area of the ellipse from the estimate on page
858: Note that the second partials of f = πab are all bounded by M = π, thus1

|f(a, b) − f(a0, b0) − Df(a0, b0) · (a − a0, b − b0)| ≤
M

2
[(a − a0)

2 + (b − b0)
2]

=
π

2
[(0.1)2 + (0.1)2]

≤ (0.01)π cm2.

To get the percentage error we should then consider

|f(a, b) − f(a0, b0) − Df(a0, b0) · (a − a0, b − b0)|
f(a0, b0)

.

This is the ratio of the error to the actual size of the approximated quantity. Of
course, in practice—and in this problem—we do not know the actual value of the
area f(a0, b0). There are a couple things we can do. One is that we can simply take
the lowest possible value for f(a0, b0) = f(9.9, 15.9) = 157.41π. This gives an error
ratio of

0.01

157.41
∼ 0.000635

or about 0.06 %. Alternatively, we might also, in practice, be a bit more sloppy and
just consider the percentage error with respect to the size of our measured (approxi-
mate) values:

|f(a, b) − f(a0, b0) − Df(a0, b0) · (a − a0, b − b0)|
f(a, b)

≤ 0.01

160
∼ 0.000625.

1The book does not go into the proof of this error estimate at this point, but it is easy to obtain
from the first order Taylor expansion formuala with remainder which reads

f(x, y) = f(x0, y0) + Df(x0, y0) · (x − x0, y − y0) +
1

2
D2f(x∗, y∗)(x − x0, y − y0) · (x − x0, y − y0)

where (x∗, y∗) is some point in a convex domain containing (x, y) and (x0, y0) and D2f is the usual
Hessian matrix of second partials. A justification for the error estimate on page 858 is given in
section 14.9.
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So you see, we get about the same answer either way.
On the other hand, the problem itself asks about the percentage error in the

calculated area, which is a different thing. In fact, in practice, the error in the
linear/affine approximation we have calculated above is of no use to us since we do
not know the zero order term f(a0, b0). Thus, the error that makes sense in this
problem is that which is pretty clearly asked for at the end of the statement—though
the introductory title Maximum error in estimating the area of an ellipse is
ambiguous.2

What makes sense is the maximum value of

|f(a, b) − f(a0, b0)|

alone rather than |f(a, b)− [f(a0, b0)+Df(a0, b0) · (a− a0, b− b0)]|. For this, we need
estimates on first derivatives rather than second derivatives. In fact, the zero order
Taylor expansion with remainder reads

f(x, y) = f(x0, y0) + Df(x∗, y∗) · (x − x0, y − y0)

where (x∗, y∗) is a point on the line segment joining (x, y) and (x0, y0). (This line
segment is assumed to lie in the domain of f .) Applying this in our case, we see

|f(a, b)−f(a0, b0)| ≤ π|(b∗, a∗) · (a−a0, b− b0)| ≤ π[(10.1)(0.1)+(16.1)(0.1)] = 2.62π.

Therefore, the desired percentage error in estimation is given by

|f(a, b) − f(a0, b0)|
f(a0, b0)

≤ 2.62

157.41
∼ 0.0166

or about 1.7 %. If, as before, we substitute the exact measured values as the reference
calculation, we get

|f(a, b) − f(a0, b0)|
f(a, b)

≤ 2.62

160
∼ 0.0164

so about 1.6 %. Almost the same thing.
Now we can move on to problem number 63, the next problem, where things really

go off the rails. The heading says Error in estimating a product. As we know
from the previous problem, what is presumably intended is Error in calculating
a product. That is, we have some error in measuring values u and v, so that the

2A better heading might be Maximum error in calculating the area of an ellipse.
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tolerances, or maximum increments, with respect to some (unknown) exact values
are known:

|u − u0| < ǫ1 and |v − v0| < ǫ2. (4)

And we are asked to determine the largest possible error in the calculated product
y = uv, as compared to the (unknown) exact product u0v0. It is also mentioned that
we are restricting attention to only positive values of u and v. In practice, we are
not given increments as in (4) but rather percentage error in measurement. This
means something like this:

|u − u0|
u0

< p1 = 0.02 and
|v − v0|

v0

< p2 = 0.03. (5)

That is, u is known/measured within a 2 % error and v, likewise, is measured within
a 3 % error. One might also, under the assumption that u and u0 are relatively close
together, interpret the given measurement tolerances as

|u − u0|
u

< q1 = 0.02 and
|v − v0|

v
< q2 = 0.03. (6)

Exercise 2 Given (5), what values are implied for (6)? Show for example that

|u − u0|
u

< q1 =
p1

1 − p1

and if p0 = 0.02, then
p1

1 − p1

= 0.98p1.

Hint: If u < u0, then |u − u0| = u0 − u < u0p1 and

|u − u0|
u

<
|u − u0|

(1 − p1)u0

.

In any case, we now have at least four different notions of error floating about.
There is the error of first order approximation discussed in sections 14.6 and
14.9 associated with the first order Taylor expansion formula with remainder:

f(x) = f(x0) + Df(x0)(x − x0) +
〈

D2f(x∗)(x − x0),x − x0

〉

where
〈

D2f(x∗)(x − x0),x − x0

〉

=
∑

eij

1

eij !

∂2f

∂xi, ∂xj

(x∗) (x − x0)
eij

=
1

2

(

∑

i

∂2f

∂x2
i

(x∗) (xi − x0,i)
2

+2
∑

i<j

∂2f

∂xi∂xj

(x∗) (xi − x0,i)(xi − x0,j)

)

,
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and x∗ is some point on the segment between x = (x1, . . . , xn) and x0 = (x0,1, . . . , x0,n).
We recall the multi-index conventions for eij = ei + ej ∈ N

n = {(i1, . . . , in) : ik ∈
{0, 1, 2, . . .} for k = 1, 2, . . . , n}:

eij ! = i!j! and veij = vivj .

Notice that the actual error here (or remainder) involves second order derivatives.
In order to bound the error of a first order Taylor approximation, you
use second derivatives. A justification of the Taylor formula with remainder is as
follows:3

Let x0 and x be fixed with all the points (1− t)x0 + tx in the domain of f . Notice
that these are the points on the line segment from x0 to x. In fact, ℓ(t) = (1−t)x0+tx
parameterizes this segment on the interval 0 ≤ t ≤ 1 with ℓ(0) = x0 and ℓ(1) = x.
Consider the function

g(t) = f(x0) + Df(x0) · (x − x0)t + [f(x) − f(x0) − Df(x0) · (x − x0)]t
2,

and the difference δ(t) = f((1 − t)x0 + tx) − g(t). Notice that g(0) = f(x0), so
δ(0) = 0. Also, g(1) = f(x), so δ(1) = 0. By the mean value theorem, there is some
t1 such that δ′(t1) = 0. This means

g′(t1) = Df(x0)(x − x0) + 2[f(x) − f(x0) − Df(x0) · (x − x0)]t1 = 0,

and δ′(0) = Df(x0) · (x−x0)−g′(0) = 0 = δ′(t1). Therefore, considering the function
δ′ : [0, t1] → R, we can apply the mean value thereom again to conclude there is some
t∗ with 0 < t∗ < t1 such that δ′′(t∗) = 0. Computing δ′′(t∗) we conclude

〈D2f((1 − t∗)x0 + t∗x)(x − x0),x − x0〉 − g′′(t∗) =

〈D2f((1 − t∗)x0 + t∗x)(x − x0),x − x0〉
− 2[f(x) − f(x0) − Df(x0) · (x − x0)]

= 0.

This means there is a point x∗ = (1 − t∗)x0 + t∗x on the segment connecting x0 and
x for which

f(x) − f(x0) − Df(x0) · (x − x0) =
1

2
〈D2f(x∗)(x − x0),x − x0〉,

3There is some version of this in section 14.9, and we will also use/review an argument from the
end of section 10.9 in Chapter 10.
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and this is the first order Taylor formula with remainder.
So that’s one kind of error estimation. In addition, we are interested in the zero

order Taylor approximation formula with remainder. That is,

f(x) = f(x0) + Df(x∗) · (x − x0).

Exercise 3 Use the mean value theorem, as we did above in the first order case, to
prove the zero order Taylor formula with remainder.

Finally, there is error in measurement and the resulting error in calculation of
a formula like y = uv. The error in measurement has already been interpreted in
terms of inequalities involving increments and as percentages of the value measured.
We can apply a similar interpretation for the values of a function like y = uv. The
error in calculation would be

|uv − u0v0|
where as above u0 and v0 are some (unknown) actual exact values and u0v0 is the
(unknown) exact value of the calculation. Also, the quantities

|uv − u0v0|
u0v0

or
|uv − u0v0|

uv

may be used to represent the percentage error in such a calculation. I think it’s pretty
clear what is required/expected in part (a) of this problem. We are given (5), and
and it is desired for us to use the zero order approximation formula to estimate the
error in the calculation of y like this:

|uv − u0v0|
u0v0

=
|Dy(u∗, v∗) · (u − u0, v − v0)|

u0v0

=
|(v∗, u∗) · (u − u0, v − v0)|

u0v0

=
|(v∗(u − u0) + u∗(v − v0)|

u0v0

≤ v∗

v0

|u − u0|
u0

+
u∗

u0

|v − v0|
v0

≤ v∗

v0

p1 +
u∗

u0

p2. (7)

At this point, we are supposed to assume u∗/u0 ∼ 1 and v∗/v0 ∼ 1 so that the error
is

|uv − u0v0|
u0v0

∼ p1 + p2 = 0.02 + 0.03 = 0.05
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where “∼” here means “roughly no more than.” Thus, we get the 5% answer in the
back of the book. Notice that this last step is a bit sloppy.

Exercise 4 Start with (7) and use the approach of Exercise 2 involving estimates for
the quotients u∗/u0 and v∗/v0 carefully, and see if you can still get 5 % to the nearest
tenth.

Let’s move on to part (b). We are asked to consider a second function z = u + v,
which we note is linear in u and v, and compare the percentage errors in the calculated
values of the functions y and z. In particular, we are supposed to show the percentage
error in z is less than the percentage error in y. This assertion seems to simply be
false. Nevertheless, it is more or less clear what one is expected to do. That is, the
incorrect reasoning of—and expected by—the person who wrote the problem can be
easily guessed. Remember the percentage error is represented by

|uv − u0v0|
u0v0

=
|(v∗(u − u0) + u∗(v − v0)|

u0v0

≤ v∗

v0

|u − u0|
u0

+
u∗

u0

|v − v0|
v0

<
v∗

v0

p1 +
u∗

u0

p2.

The corresponding percentage error for the sum z = u + v is

|u + v − u0 − v0|
u0 + v0

=
|u − u0 + v − v0|

u0 + v0

≤ |u − u0|
u0 + v0

+
|v − v0|
u0 + v0

=
u0

u0 + v0

|u − u0|
u0

+
v0

u0 + v0

|v − v0|
v0

<
u0

u0 + v0

p1 +
v0

u0 + v0

p2.

It is clear, moreover, that we can continue the last approximation/estimation to obtain

|u + v − u0 − v0|
u0 + v0

< p1 + p2.

Therefore, if we (by whatever means) interpret the “percentage error” in the mea-
surement of y to be p1 + p2, then we have “shown” what the problem asks us to
show.
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There are several problems with this. At the heart of those problems is basically
this:

If you show A < B and C < D, then the fact that B < D does not imply
A < C.

To be very explicit, let us imagine that u0 and v0 are both 1. But our measurements
are u = 2 and v = 1/2. Then the percentage error in the product is

|uv − u0v0|
u0v0

= 0. (8)

The supposedly “smaller” percentage error in the sum z = u + v is

|u + v − u0 − v0|
u0 + v0

=
1/2

2
= 0.25

or 25 %!
There is (yet!) a fifth notion of error mentioned in the text. This appears in the

discussion of differentials on page 858. That is the increment of the linearization.
Thus, in groping for a way to devine what the author of this problem had in mind,
we might imagine taking as representative of the percentage error, that produced by
the error in the affine approximation. This would mean considering for the product
y = uv the function α(u, v) = u0v0 + (v0, u0) · (u − u0, v − v0) and the quantity

|α(u, v) − α(u0, v0)|
u0v0

=
|v0(u − u0) + u0(v − v0)|

u0v0

(9)

in comparison to the corresponding quantity for the sum, which since the sum is
linear, is just

|u + v − u0 − v0|
u0 + v0

as above. Writing these as
∣

∣

∣

∣

u − u0

u0

+
v − v0

v0

∣

∣

∣

∣

and

∣

∣

∣

∣

u − u0

u0 + v0

+
v − v0

u0 + v0

∣

∣

∣

∣

we see that putting u0 = 1 = v0 and u = 2, v = 1/2 as before, the two quantities
are 1/2 and 1/4 respectively, so this “affine error” for the sum is less than the “affine
error” for the product, and it looks like there may be some hope to show

∣

∣

∣

∣

u − u0

u0 + v0

+
v − v0

u0 + v0

∣

∣

∣

∣

≤
∣

∣

∣

∣

u − u0

u0

+
v − v0

v0

∣

∣

∣

∣

.
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Putting u0 = 2 and v0 = 1 with u = 3 and v = 1/2, however, gives

∣

∣

∣

∣

u − u0

u0

+
v − v0

v0

∣

∣

∣

∣

= |1/2 − 1/2| = 0

for the “affine error” for the product and

∣

∣

∣

∣

u − u0

u0 + v0

+
v − v0

u0 + v0

∣

∣

∣

∣

= |1/3 − 1/6| = 1/6 > 0

for the “affine error” for the sum. The bottom line is that there does not seem any
reasonable way to make sense of part (b) of this problem. No solution is given for
this part in the back of the book. I haven’t checked the solutions manual.

Okay, I checked the solutions manual, and the error there is even worse. Basically,
all increments are assumed positive. So the problem in the offered solution of 63 part
(b) is that it is always assumed u − u0 ≥ 0 and v − v0 ≥ 0. Based on this, the error
for the sum is expressed as

u − u0

u0 + v0

+
v − v0

u0 + v0

(without the absolute values). And the “error” for the product is

u − u0

u0

+
v − v0

v0

(again without the absolute values). Then—if you incorrectly assume u − u0 and
v − v0 are positive, ie., that all measurements are higher than the exact values—then
indeed

u − u0

u0 + v0

+
v − v0

u0 + v0

≤ u − u0

u0

+
v − v0

v0

.

(Of course, it is mentioned as justification that the assumption of positivity for u and
v is used, but more than that is needed.)

Incidentally, the explanation given in the solution manual for part (a) uses what
we’ve called the affine error for the product, and then the solution is very clean:

∣

∣

∣

∣

u − u0

u0

+
v − v0

v0

∣

∣

∣

∣

≤
∣

∣

∣

∣

u − u0

u0

∣

∣

∣

∣

+

∣

∣

∣

∣

v − v0

v0

∣

∣

∣

∣

≤ p1 + p2. (10)

Here, the application of the triangle inequality is correct, so there is no problem with
assuming the increments are positive.
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On the other hand, I see that technically the argument given is somewhat different
(though more or less equivalent to) what we’ve done in (10) . Let’s think carefully
about what is done there because something like it will come up naturally later.
Starting with the notation directly from the solutions manual:

dy = v du + u dv and
dy

y
=

du

u
+

dv

v
.

Translating to our notation the first equation would be

dy(u− u0, v − v0) = v(u − u0) + u(v − v0).

This is not the correct formula for the linear part of the product y = uv at the actual
values (u0, v0) which would be (what we have used above, namely)

dy(u− u0, v − v0) = v0(u − u0) + u0(v − v0).

So what has been done here? Apparently, the gradient was evaluated at the known
(measured) values which are overall assumed “close” to the unknown actual values:

dy = dy(u− u0, v − v0) ∼ Dy(u, v) · (u − u0, v − v0) = v(u − u0) + u(v − v0).

Then a comparison is made to the known (measured) product uv for the percentage:

∣

∣

∣

∣

dy

y

∣

∣

∣

∣

∼
∣

∣

∣

∣

v(u − u0) + u(v − v0)

uv

∣

∣

∣

∣

< 0.05.

Of course, nothing is mentioned about the (double) approximation

dy

y
=

v0(u − u0) + u0(v − v0)

u0v0

∼ v0(u − u0) + u0(v − v0)

uv
∼ v(u − u0) + u(v − v0)

uv
.

Again, one could give precise estimates for the errors in these approximations.

Exercise 5 Taking careful account of both of these approximations, what can you say
about the percentage of affine error calculated by the method in the solutions manual?

Just to be clear, the percentage of affine error we have in mind here is represented by

|v0(u − u0) + u0(v − v0)|
u0v0

,
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which we can estimate directly under the assumptions |u − u0|/u0 < 0.02 and |v −
v0|/v0 < 0.03. The quantity estimated in the solutions manual,

|v(u − u0) + u(v − v0)|
uv

,

is an approximation of the percentage of affine error which is approximated there
under the assumptions |u − u0|/u < 0.02 and |v − v0|/v < 0.03. The question
of whether to evaluate the gradient at the exact values (u0, v0), which happen to
be unknown, or to consider some kind of strange affine approximation obtained by
evaluating the gradient at the approximate measured values (u, v), which have the
virtue of being known, will come up below.

Saying more

While we have shown some shortcomings in the composition of Problem 63, especially
part (b), when looking at the expressions

|uv − u0v0|
u0v0

=
|(v∗(u − u0) + u∗(v − v0)|

u0v0

=

∣

∣

∣

∣

v∗

v0

u − u0

u0

+
u∗

u0

v − v0

v0

∣

∣

∣

∣

(11)

and
∣

∣

∣

∣

u − u0

u0 + v0

+
v − v0

u0 + v0

∣

∣

∣

∣

(12)

for the percentage error for the product y = uv and the sum z = u + v respectively,
we have the feeling that under some (or most) circumstances the second (percentage)
error should be smaller. This is based on the larger denominators appearing in the
second (percentage) error. Of course, we know it is not always true that the (per-
centage) error in the sum calcuation is less than the (percentage) error in the product
calculation, but still we can ask:

When or how much (for how many values both exact and measured) does
the desired inequality fail?

On the face of it, this is a pretty hard question, and here is why: If we call the
percentage error in the product Pp and the percentage error in the sum Ps, then these
represent two functions of four variables:

Pp : (0,∞)4 → R with Pp = Pp(u, v, u0, v0) by the formula (11).
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And we have a similar representation for the sum with Ps = Ps(u, v, u0, v0) defined
on the same region of R

4 using (12). One expects it is very difficult to compare two
complicated functions on a big open set in R

4. Nevertheless, perhaps something more
can be said, so let’s try to say something more.

Figure 1: The graph of the error Es in calcuation of a sum u0 + v0 when one
takes/measures u = 10 and v = 16 (left). Zero level sets for Es and Ep (right).

First of all, we are given no specific values for u and v (like a = 10 and b = 16 in
Prolem 62), but we could take some specific values and reduce our consideration to two
functions of two variables u0 and v0. Moreover, we may simplify the functions under
consideration by using different measurements for error, like the absolute error, rather
than the percentage error. Similarly, we could have a look at the affine percentage
error. Let’s try to look at all of these at least in some special cases. Let us start with
the simplest, which is the actual value of the error. Setting

Ep = |uv − u0v0| and Es = |u + v − u0 − v0|,
if we set u = 10 and v = 16 these quantities become Ep = |160 − u0v0| and Es =
|26 − u0 − v0|. Both quantities are zero at (10, 16) and non-negative elsewhere. Let
us understand this error Es = Es(u0, v0) for the sum first; it is the easier/simpler
one. The graph is piecewise planar as indicated on the left in Figure 1. Obviously,
the zero level set Zs is the line v0 = 26− u0. Let us note, finally, that over the region
u0+v0 < 26 in the first quadrant, the error Es for the sum is given by Es = 26−u0−v0,
and in the complementary region 26 < u0 + v0 we have Es = u0 + v0 − 26.

The graph of Ep for the error in the product is somewhat more complicated. The
zero level set Zp for Ep is not a straight line, but the curve u0v0 = 160. This is a

13



convex curve, and we know it intersects the line u0 + v0 = 26 in the points (10, 16)
and (16, 10). By convexity, these are the only points of intersection of Zp with Zs as
indicated on the right in Figure 1. Furthermore, Ep = 160−u0v0 in the region where
u0v0 < 160 and Ep = u0v0 − 160 in the complementary region where u0v0 > 160.
Taking these considerations into account as illustrated in Figure 1 (right), we can try
to understand the set of points (u0, v0) where Ep = Es. From that, we should be able
to understand the entire situation.

First of all, if we look for such points in R1 = {(u0, v0) : u0 + v0 < 26 and u0v0 <
160}, then we want

26 − u0 − v0 = 160 − u0v0 or u0v0 − u0 − v0 = 134 or v0 =
u0 + 134

u0 − 1
.

This represents a convex graph in the first quadrant which we know also passes
through (10, 16) and (16, 10). For u0 < 10 we find

v1 =
u0 + 134

u0 − 1
>

160

u0

since u2
0 +134u0 > 160u0−160. (This is because u2

0−26u0 +160 = (u0−10)(u0−16)
has zeros at u0 = 10 and u0 = 16.) For essentially the same reason, we obtain a
convex curve connecting (10, 16) to (16, 10) in the region R1. This separates R1 into
two regions, a large one

R1a = {(u0, v0) : u0 + v0 < 26 and v0 < v1(u0)}

containing (u0, v0) = (1, 1) in which Es < Ep, and a second very thin region

R1b = {(u0, v0) : 10 < u0 < 16 and v1(u0) < v0 < 160/v0}

close to the portion of ∂R1 consisting of Zp and on which Ep < Es. These regions are
indicated in Figure 2 though region R1b is so small it is difficult to see.

Moving to the region(s) between the line Zs and the curve Zp, one of the expres-
sions for Es or Ep changes sign, so for equality we get

−(26−u0−v0) = 160−u0v0 or u0v0 +u0+v0 = 186 or v0 =
186 − u0

u0 + 1
.

Finally, there is another large region {(u0, v0) : v0 > max{v1(u0), v2(u0)}, 0 < u0}
where

v2 =
186 − u0

u0 + 1
,
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Figure 2: The dashed curves in the figure on the left bound a narrow disconnected
region around the branch of the hyperbola Zp = {(u0, v0) : v0 = 160/u0} on which
the error Es in the calcuation of the sum u0 + v0 is greater than the error Ep in
the calculation of the product u0v0. On the right is the graph of the error Ep for the
product; note the scale on the Ep axis is very different from that used in the plot of
Es in Figure 1.

and Es < Ep on this region.
I would like to pause and point out that my use of the words “large” and “small”

here, in the sense that R1a is “large” and R1b is “small,” while appearing convincing,
say from the figures, is rather inexact. It would be very nice to have some quantita-
tive measure to compare precisely how much more likely it is to have Es < Ep. One
might consider measuring the area of the regions, though there is some difficulty with
this due to the fact that the areas of both regions are infinite. Another reasonable
approach would be to determine the angle θ at which the dashed curves meet, and
then consider the relative sizes of θ/π and (π − θ)/π.

Exercise 6 How much of our discussion of the sets Zs and Zp, the graphs of the
errors Es and Ep, and the regions where Es < Ep above can be extended to arbitrary
(fixed) measured values u and v? In particular, what happens in cases where u = v
that is different when u 6= v? Can you compute the angles between the dashed curves
as described above as functions of general u and v?
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Note that partially due to the particular measured values (u, v) = (10, 16) in-
volved, the gradient of the function appearing in the absolute values of the product
error Ep = |uv − u0v0| at (10, 16) is rather large compared to the gradient of the
corresponding function in the sum error Es = |u + v − u0 − v0|:
∇(uv−u0v0) = (−v0,−u0) = (−16,−10) while ∇(u+v−u0−v0) = (−1,−1).

In fact, at each point along the curve Zp, the absolute value of the affine approximation

|(−v0,−u0) · (ξ − u0, η − v0)|
associated with the product Ep is a piecewise affine function like Es whose graph may
be visualized as two planes meeting along the tangent line to Zp and tangent to the
graph of Ep at (u0, v0, 0). Comparing the relative slopes of these affine approximations
suggests something interesting: The region(s) on which Ep < Es should become larger,
in some sense, when u and v are smaller. Let’s see if we can realize this suggestion.

Instead of (u, v) = (10, 16) which was obtained in a rather arbitrary way simply
by taking the semi-axes of the ellipse considered in the nominally unrelated previous
problem (Problem 62), let us take for measured values (u, v) = (1/2, 1/4). In this
case,

Ep = |1/8 − u0v0| and Es = |3/4 − u0 − v0|.
The curves Zs and Zp are given by

v0 = 3/4 − u0 and v0 =
1

8u0

respectively. The bounding curves are given by

v1 =
u0 − 5/8

u0 − 1
and v2 =

7/8 − u0

u0 + 1
.

Not only is the “smaller” or bounded region somewhat more substantial and easier to
see—our choice of measured values has caused it to “fatten up”—but there are two
other dramatic changes. First, this smaller disconnected region is now a region along
Zs rather than along Zp. Second, the large and unbounded region is the region where
the error in the sum calculation is larger than the error in the product calculation.
There are two immediate conclusions to draw from this. First, it should not be
expected that the actual error in calculating the product is larger than the actual
error in calculating the sum, though this says nothing about the relative (percentage)
errors which have denominators to seemingly magnify the (percentage) error of the
product calculation over that of the sum calculation. Second, some kind of major
transition has taken place in moving the measured values from (10, 16) to (1/2, 1/4).
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Figure 3: The dashed curves in the figure bound a narrow disconnected region around
the line Zs = {(u0, v0) : v0 = 3/4− u0} on which the error Es in the calcuation of the
sum u0 + v0 is less than the error Ep in the calculation of the product u0v0.

Exercise 7 Explain the transition in terms of a continuous family of comparisons
depending on the measurements (u, v).

Let us turn now to the percentages

Pp =
|uv − u0v0|

u0v0

and Ps =
|u + v − u0 − v0|

u0 + v0

.

As we have set these up, we are multiplying the actual errors by functions which are
singular along the coordinate axes u0 = 0 and v0 = 0. To be precise,

Pp =

(

1

u0v0

)

Ep and Ps =

(

1

u0 + v0

)

Es.

This, at least potentially, complicates matters substantially. The level sets

Zs = {(u0, v0) : Ps(u0, v0) = 0} and Zp = {(u0, v0) : Pp(u0, v0) = 0}

are the same as the sets of the same name above. This tells us that there will always
be some region around Zp on which Ps > Pp, but the graphs to be considered are
quite different, so maybe now this region will always be, in some sense, small. The
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removal of the absolute values proceeds much as before, so that in the unbounded
regions determined by Zs and Zp, the equality Ps = Pp is represented by

uv − u0v0

u0v0

=
u + v − u0 − v0

u0 + v0

. (13)

This leads to the relation

uv(u0 + v0) = (u + v)u0v0 or v0 = v1(u0) =
uvu0

(u + v)u0 − uv
=

u0

u+v
uv

u0 − 1
.

Similarly, the other curve is given by

−uv − u0v0

u0v0

=
u + v − u0 − v0

u0 + v0

(14)

which becomes
−uv(u0 + v0) + 2u0v0(u0 + v0) = (u + v)u0v0

or
2u0v

2

0 + [2u2

0 − uv − (u + v)u0]v0 − uvu0 = 0

which is quadratic in v0. Thus, we are led to

v0 = v2(u0) =
−[2u2

0 − uv − (u + v)u0] ±
√

[2u2
0 − uv − (u + v)u0]2 + 8uvu2

0

4u0

.

We have plotted these curves for the choice (u, v) = (1/2, 1/4) and (u, v) = (2, 1/2)
in Figure 4. One presumes that for the percentages, there is always a (small) banded
region about Zp corresponding to the inequality Pp < Ps. We have not shown this.
Presumably, the following is correct:

Conjecture/Exercise 1 The functions v1 = v1(u0) and v2 = v2(u0) defined above
have natural domains containing both the minimum m = min{u, v} and the maximum
M = max{u, v} of the known measured values u and v, and satisfy

vs(u0) = u+v−u0 < v2(u0) < vp(u0) =
uv

u0

< v1(u0) for u0 < m and u0 > M

v2(u0) < vp(u0) < v1(u0) < vs(u0) for m < u0 < M.

And Pp(u0, v0) < Ps(u0, v0) in the region between the graphs of v1 and v2 containing
the graph of vp (except for the points (u, v) and (v, u) which are a single point when
u = v) while Ps(u0, v0) < Pp(u0, v0) elsewhere in the open first quadrant.
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Figure 4: Percentages of error. The first counterexample (u0, v0) = (1, 1) ∈ Zp is
illustrated on the right.

Considering the graphs of v1 and v2 as level sets, we can compute the angle between
them as the angle between the respective normals. Writing (13) as

uv(u0 + v0) − (u + v)u0v0 = 0,

the gradient of the function on the left (with respect to (u0, v0)) is

(uv − v0(u + v), uv − u0(u + v))

which evaluted at (u0, v0) = (u, v) becomes (−v2,−u2). This is a downward normal,
so let us set v = (v2, u2).

Similarly, (14) can be written as

−uv(u0 + v0) + 2u0v0(u0 + v0) − (u + v)u0v0 = 0,

and the gradient here is

(−uv + 4u0v0 + 2v2

0 − v0(u + v),−uv + 4u0v0 + 2u2

0 − u0(u + v))

with evaluated value w = (2uv + v2, 2uv + u2). (This is an upward normal.) Thus,
the angle between v and w satisfies

cos θ =
2uv3 + v4 + 2u3v + u4

√
u4 + v4

√
4u2v2 + 4uv3 + v4 + 4u2v2 + 4u3v + u4

.
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It’s not exactly clear how much we can say about this angle. We can say, however, that
both normal vectors point strictly into the first quadrant. This means the expression
for cos θ is strictly between 0 and 1, and this means the angle corresponding to
Pp < Ps is greater than zero (so the region near the measured value (u, v) in which
the percentage error for the product is smaller than the percentage error for the sum
always corresponds to a smaller pair of sectors) and less than 1 (so there is no chance
of showing the percentage error for the sum is always smaller than the percentage
error for the product—as required by the problem). The sectors corresponding of size
θ and π − θ are illustrated in Figure 5.

Let’s go back and realize the counter-examples given above in the framework we
have worked out here. The first one was when (u, v) = (2, 1/2), v = 1/2 and we have
simply picked the actual exact values (u0, v0) = (1, 1) to be on the curve Zp which
gives zero error for the product (Figure 4 (right)). This is, on the one hand, difficult
for the sum to beat and on the other hand clearly in the region where the percent
error for the product should beat the sum.

Figure 5: Example where the percentage of error in the calculation of the product is
less than the percentage of error in the calculation of the sum. In this case (u, v) =
(2, 1/2) and (u0, v0) = (1, 1). The illustration on the left is the same as Figure 4
(right) with a region of interest around (2, 1/2) added. On the right we have zoomed
in to the region of interest.

The second example is rather more interesting. This is where the question of
where to linearize comes up. We have argued that to approximate the product uv or

20



the product error uv − u0v0 it is most natural to take the affine approximation with
respect to u and v which involves the gradient (v, u) with respect to u and v followed
by an evaluation at the actual values (u0, v0). The approach we have taken in which
(u, v) is fixed, and then we consider all values (u0, v0) which the actual values may
take, makes it natural to linearize with respect to (u0, v0), and then plug in (u, v) for
(u0, v0). We did this, for example, in the discussion following Exercise 6. Now we will
contemplate both processes in the same discussion. Here our counterexample is given
by (u, v) = (3, 1/2) and (u0, v0) = (2, 1). And we are using the affine error obtained
by linearizing uv − u0v0 as a function of u and v at (u0, v0). This expression does
not make a natural geometric appearance in our framework. In particular, we should
consider the sets where

Qp =
|v0(u − u0) + u0(v − v0)|

u0v0

is greater than, less than, or equal to Ps. First of all, the zero set Zq for Qp is given
by the relation v0(u − u0) + u0(v − v0) = 0 or

v0 = vq(u0) =
vu0

2u0 − u
.

Associated with this zero curve, we obtain also two transition curves

±v0(u − u0) + u0(v − v0)

u0v0

=
u + v − u0 − v0

u0 + v0

.

These transition curves are (apparently) not always graphs, but presumably they have
properties rather similar to v1 and v2 above. In fact, one should be careful with regard
to the conjecture/exercise above; maybe the transition curves there are not always
graphs either. Nevertheless, we expect that each such curve may be represented by
at most two graphs each corresponding to signs “±”, and we have that Qp = Ps along
the graphs of

v0 = v3(u0) = u0

u0 ±
√

u2
0 + 4vu0 − 4uv

2(u − u0)

and

v0 = v4(u0) = u0

3u0 − 2(u + v) ±
√

9u2
0 − 12uu0 + 4(u2 + uv + v2)

2(u − 3u0)
.

Presumably, conclusions somewhat similar to those concerning Ps and Pp and the
“graphs” of v1 and v2 given in Conjecture/Exercise 1 hold for Qp, Ps and the curves
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Figure 6: Affine error. In these figures, we compare the percentage error in the
calculation of the affine approximation of the product with the percentage error in
the calculation of the sum (which is the same as the affine approximation of the
calculation of the sum). On the left we illustrate that when the exact values are
(u0, v0) = (1, 1) and the measured values are (u, v) = (2, 1/2) (which give the exact
product exactly) then the percentage error in the affine approximation of the product
is still more than the percentage error in the calculation of the sum. Thus, these
values do not give a counterexample to the assertion of the text (Problem 63 part
(b)) when one uses the affine approximation to represent the product. On the right,
however, we illustrate a counterexample in which the percentage of error in the affine
approximation of the calculation of the product is less than the percentage of error
in the calculation of the sum. In this case (u, v) = (3, 1/2) and (u0, v0) = (2, 1).

associated with v3 and v4 as illustrated in the special case of our second counterex-
ample in Figure 6. As mentioned above, the linearization of the product error at the
point (u0, v0) giving the (unknown) exact values is not easily represented in our fig-
ures. This is because this notion of “affine error” dependends on the position (u0, v0)
in a nonlinear way. Nevertheless, this is the most natural quantity to consider.

Finally, if one is willing to use the sloppy approximations u0ũ and v0ṽ as justifi-
cation for it, one might consider the alternative affine error determined by linearizing
with respect to (u0, v0), and then evaluating at the measured values (u, v). That is,
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one may compare Ps to

Wp(u0, v0) =
|v(u − u0) + u(v − v0)|

uv
.

Notice that Wp depends on u0 and v0 linearly. Thus, the graph of Wp is the “wedge”
determined by two half planes meeting along the line Zw = {(u0, v0) : Wp(u0, v0) = 0}
as discussed just after Exercise 6. This greatly simplifies the discussion, but still does
not lead to any possibility to justify the conclusion of Problem 63 part (b).

Exercise 8 Reproduce the illustration on the right in Figure 6. Apply the discussion
concerning the comparison of Pp to Ps and insert also the curve Zp along with the
graphs of v1 and v2 on the same illustration. Determine the transition curves (say v5

and v6) where Ps(u0, v0) = Wp(u0, v0) and sketch them on the same figure. You should
then have three distinct wedge shaped regions determined near (u, v) = (3, 1/2):

1. The region where Pp < Ps determined by v1 and v2.

2. The region where Qp < Ps determined by v3 and v4.

3. The region where Wp < Ps determined by v5 and v6.

What is the relation between these three wedge shaped regions? Can you find a point
(u0, v0) in all three of them? Have we already found such a point?

Final Remarks

One may become irritated when there are errors in textbooks, but many of the best
and most famous (advanced level) textbooks in mathematics are especially known and
famous for the errors and lack of clarity within them. One does not necessarily strive
for lack of clarity, but when it occurs, it can provide an opportunity for learning—
which people who love to learn often appreciate. It took me quite a long time to
understand and explain clearly what was going on in Practice Problems 62 and 63 of
Chapter 14 in Thomas’ Calculus—and there aren’t many serious or interesting errors
in the book—but I thought about things in a different way than I had before, and I
learned some things.
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