1. (12.3.6) The boom on a crane is constructed of steel pipes drawn with the thick lines in the schematic drawing below. The triangular support is an equilateral triangle of side length 2 meters in the y, z-plane as indicated in the drawing. The boom is 3 meters long and extends horizontally orthogonal to the y, z-plane from the centroid of the triangle. The cable passes through points $A=(0,0,0)$ and B and hangs down vertically from B as indicated by the dashed vectors. Note: The centroid of an equilateral triangle is the intersection of the medians, the intersection of the angle bisectors, and the intersection of the altitudes. (These are all the same point for an equilateral triangle.) A median of a triangle is the line segment joining a vertex with the midpoint of the opposite side.

(a) (7 points) Find the distance from B to C in meters.
(b) (8 points) Find the cosine of the angle θ between the two straight portions of the cable.
(c) (10 points) Let \mathbf{v} be the vector displacement from C to B, and let \mathbf{w} be the vector displacement from C to $(0,1,0)$. Find $\mathbf{v} \times \mathbf{w}$.

Name and section: \qquad
2. (quadric surfaces) Sketch the quadric surfaces in \mathbb{R}^{3} associated with the relations:
(a) (15 points) $x^{2}-16 y^{2}-4 z^{2}=64$
(b) (10 points) $z=-2 x^{2}$

Name and section: \qquad
3. (25 points) (13.2.16) Solve the initial value problem for the vector valued function \mathbf{r}.

$$
\left\{\begin{array}{l}
\mathbf{r}^{\prime}=\left(t /\left(t^{2}+2\right),(t+1) /(2-t),\left(t^{2}+4\right) /\left(t^{2}+3\right)\right) \\
\mathbf{r}(0)=(3,-2,1)
\end{array}\right.
$$

Remember the indefinite integral $\int 1 /\left(\tau^{2}+1\right) d \tau=\tan ^{-1} \tau+C$.

Name and section: \qquad
4. (motion along a helix) A point mass moves along a cylinder with position given as a function of time by

$$
\mathbf{r}(t)=(5 \cos \theta,-5 \sin \theta, t / 2)
$$

where $\theta=\theta(t)$.
(a) (10 points) Find the velocity and acceleration on the mass.
(b) (10 points) Assuming $\theta(t)=t$, draw a picture of the path of the point mass.

Name and section: \qquad
5. (Bonus 10 points) (curvature) Find the curvature of the path parameterized by

$$
\mathbf{r}(t)=(5 \cos t,-5 \sin t, t / 2) .
$$

