## Math 2550, Exam 2 $_{\rm form \ p}$

Name and section:

- 1. Compute the partial derivatives
  - (a) (15 points) (14.3.6)  $f(x,y) = (2x 3y)^3$

$$\frac{\partial f}{\partial x} =$$
 and  $\frac{\partial f}{\partial y} =$ 

$$\frac{\partial^2 f}{\partial x^2} =$$
,  $\frac{\partial^2 f}{\partial x \partial y} =$  and  $\frac{\partial^2 f}{\partial y^2} =$ 

(b) (10 points) (14.4.41) If 
$$w = g(x^2 + y^3)$$
 and  $g'(t) = e^t$ , find

$$\frac{\partial w}{\partial x} =$$
 and  $\frac{\partial w}{\partial y} =$ 

2. (20 points) (14.5.15) Consider the function f(x, y) = xyz on  $\mathbb{R}^3$ . Find the rate of change of f in the vector direction  $\mathbf{v} = (2, 0, -4)$  at the point  $\mathbf{p} = (2/3, 1, 4/3)$ . This should be the same value as

$$\frac{d}{dt}f(\mathbf{r}(t))\Big|_{t=0} = D_{\mathbf{u}}f(\mathbf{p})$$

where  $\mathbf{r}(t) = \mathbf{p} + t\mathbf{u}$  and  $\mathbf{u} = \mathbf{v}/|\mathbf{v}|$  is a unit vector in the same direction as  $\mathbf{v}$ .

3. (14.6.7) Let a, b, and c be fixed positive numbers, and let  $\mathcal{P}$  be the plane passing through (a, 0, 0), (0, b, 0) and (0, 0, c).



(a) (10 points) Find the equation of  $\mathcal{P}$ .

(b) (15 points) Give a parametric representation of the line normal to  $\mathcal{P}$  passing through the point (a/4, b/4, c/2).

4. (25 points) (14.7.62) A rectangular solid (box) is formed with corners (0, 0, 0),  $(\ell, 0, 0)$ , (0, w, 0), (0, 0, h), and  $(\ell, w, h)$  with  $\ell$ , w, and h all positive and  $(\ell, w, h)$  on the plane

$$6x + 4y + 3z = 12.$$

Find the values of  $\ell$ , w and h giving the box of largest volume.

5. (10 points) (Bonus) Determine the maximizing dimensions of a box  $[0, \ell] \times [0, w] \times [0, h]$ as in problem 4 with corner  $(\ell, w, h)$  on the plane  $\mathcal{P}$  determined by (a, 0, 0), (0, b, 0), and (0, 0, c) from problem 2. Your answer should be in terms of a, b, and c.