1. Compute the partial derivatives
(a) (15 points) (14.3.6) $f(x, y)=(2 x-3 y)^{3}$

$$
\frac{\partial f}{\partial x}=\quad \text { and } \quad \frac{\partial f}{\partial y}=
$$

$$
\frac{\partial^{2} f}{\partial x^{2}}=\quad, \frac{\partial^{2} f}{\partial x \partial y}=\quad \text { and } \quad \frac{\partial^{2} f}{\partial y^{2}}=
$$

(b) (10 points) (14.4.41) If $w=g\left(x^{2}+y^{3}\right)$ and $g^{\prime}(t)=e^{t}$, find

$$
\frac{\partial w}{\partial x}=
$$

and $\quad \frac{\partial w}{\partial y}=$
\qquad
2. (20 points) (14.5.15) Consider the function $f(x, y)=x y z$ on \mathbb{R}^{3}. Find the rate of change of f in the vector direction $\mathbf{v}=(2,0,-4)$ at the point $\mathbf{p}=(2 / 3,1,4 / 3)$. This should be the same value as

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=0}=D_{\mathbf{u}} f(\mathbf{p})
$$

where $\mathbf{r}(t)=\mathbf{p}+t \mathbf{u}$ and $\mathbf{u}=\mathbf{v} /|\mathbf{v}|$ is a unit vector in the same direction as \mathbf{v}.
\qquad
3. (14.6.7) Let a, b, and c be fixed positive numbers, and let \mathcal{P} be the plane passing through $(a, 0,0),(0, b, 0)$ and $(0,0, c)$.

(a) (10 points) Find the equation of \mathcal{P}.
(b) (15 points) Give a parametric representation of the line normal to \mathcal{P} passing through the point $(a / 4, b / 4, c / 2)$.

Name and section: \qquad
4. (25 points) (14.7.62) A rectangular solid (box) is formed with corners ($0,0,0$), ($\ell, 0,0)$, $(0, w, 0),(0,0, h)$, and (ℓ, w, h) with ℓ, w, and h all positive and (ℓ, w, h) on the plane

$$
6 x+4 y+3 z=12 .
$$

Find the values of ℓ, w and h giving the box of largest volume.

Name and section: \qquad
5. (10 points) (Bonus) Determine the maximizing dimensions of a box $[0, \ell] \times[0, w] \times[0, h]$ as in problem 4 with corner (ℓ, w, h) on the plane \mathcal{P} determined by $(a, 0,0),(0, b, 0)$, and $(0,0, c)$ from problem 2. Your answer should be in terms of a, b, and c.

