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In the second semester of calculus (Calc II) one learns about the Riemann integral
on intervals:

∫ b

a

f(x) dx.

The construction used to define the Riemann integral on intervals may be generalized
to apply to integration on a variety of sets, which we are calling “objects.” It is useful
to have an idea of the general abstract construction of such integrals so that one can
apply it to objects such as

1. regions (areas) in R
2,

2. volumes in R
3,

3. regions in R
n for n > 3 (i.e., “hypervolumes” or n-dimensional manifolds),

4. curves in R
n,

5. surfaces in R
n.

Integration on all these “objects” is possible, and we describe such integration here
in abstract terms.

1 Abstract Integration

Several ingredients are required. Most are very easy to understand. We need an
object, which we will call, generally, V and a real valued function defined on the
object:

f : V → R.
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The function f assigns a real number to each point in V. The basic concept we want
to define/discuss is called

Integrating a real valued function f on an object V.

Partition

Next we need a way to cut the object V up into small pieces. The set of pieces
together is called a partition and is sometimes denoted by

P or {Vj}.

There should be finitely many pieces in the partition, and they are indexed by j.
Thus, {Vj} means {V1,V2,V3, . . . ,Vk} where k is some finite number. An important
thing to remember about a partition is that the union of the partition pieces gives
the entire object. In mathematical notation this is expressed by writing

V = ∪jVj .

As a technical point, it’s often okay for the partition pieces to overlap a little bit, but
you don’t want them to overlap too much. We will mention this technical point again
below.

Measure

We also need a way to measure the size of the partition pieces. Technically, we often
need two ways to measure partition pieces, but we’ll get to that in a moment. The
first way, we’ll call a measure and denote the size of a piece by

meas(Vj).

If V = [a, b] is an interval, then we can partition into subintervals Vj = [xj−1, xj ]
where P : a = x0 < x1 < x2 < · · · < xk = b, and we can use length for the measure:
meas(Vj) = xj − xj−1. If V is an area in R

2, then we will want meas(Vj) = area(Vj).
You’ll note that area and length are very different kinds of measures. We need to
choose the measure suitable to the object on which we want to integrate. The measure
tells us how much the partiation pieces may overlap: We always want meas(Vi∩Vj) =
0 when i 6= j. You can check that this happens with our partition of the interval.
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Riemann Sum

Once we have a partition and a measure, we can form a Riemann sum:
∑

j

f(x∗
j) meas(Vj).

Actually, we also needed to choose the evaluation points x∗
j , but that almost goes

without saying. These points are chosen so that x∗
j ∈ Vj. There are k of them,

and the superscript “∗” indicates that there might be many alternative choices, i.e.,
there are probably many points in Vj from which to choose. Eventually, we want to
consider all possible choices, but for now we can just imagine having made one such
choice.

It will be recalled that the Riemann sum associated with a function defined on an
interval [a, b] can be interpreted as an approximation of the (signed) area under the
graph of the function. There are various similar interpretations which are, more or
less, possible for other Riemann sums.

The Riemann Integral

We are essentially ready to define the integral of f over V. Let us write down the
definition and explain it.

∫

V

f = lim
‖P‖→0

∑

j

f(x∗
j) meas(Vj). (1)

This says that we get the integral by taking a limit of the Riemann sum(s). How many
Riemann sums are there? There are usually a lot of them, because there are, first of
all, many choices for the partition. Also, there can be many choices for the evaluation
points. Having noted and understood all these possible choices, it’s relatively easy to
explain what is going on in this limit—though this is probably the trickiest part.

Norm of a Partition

Before we give that explanation, we need one more thing. We need to explain ‖P‖
which is the norm of the partition. The condition ‖P‖ → 0 is a (second) way of
saying we want all the partiation pieces to get “small.” For intervals, we can use the
measure to accomplish this:

‖P‖ = max
j

(xj − xj−1).
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That is, the norm of a partition consisting of intervals is the length of the longest
interval in the partition. If we try to use area, on the other hand, for the norm of
a partition consisting of areas in the plane, then we run into trouble. Can you see
why? The problem is that a very small area in the plane (arbitrarily small actually)
can be spread out all over the place.

Exercise 1 Find a subset V1 of the unit square V = [0, 1] × [0, 1] with the following
properties:

1. area(V1) = 1/1000, and

2. Given any point p ∈ V, there is a point q ∈ V1 such that |p− q| < 1/1000.

To elaborate on this problem a little more, we’d like (at least when the function f
is continuous) to have the individual terms f(x∗

j ) meas(Vj) in the Riemann sum to
have about the same value no matter which evaluation point x∗

j ∈ Vj is chosen. This
amounts to having f(x∗

j) and f(x∗∗
j ) close together whenever x∗

j and x∗∗
j are any

two different evaluation points in Vj. This kind of situation is most easily realized
by requiring Vj does not “spread out” too much. And the measure area does not
accomplish this.

In short, we often need another way to measure the size of pieces. Without
specifying this measure exactly, let us denote it by diam. Then we can take (at least
symbolically)

‖P‖ = max
j

diam(Vj).

Thus, ‖P‖ is the “diameter” of the partition piece with the largest “diameter.” For
many kinds of sets,

diam(Vj) = sup{|x − y| : x,y ∈ Vj} (2)

provides a reasonable notion of diameter. In this expression, the sup (supremum) of a
set of real numbers is the smallest number that is greater than every number in the set.
That’s kind of a mouthful. The supremum is also sometimes called the least upper
bound, and it’s an axiom of the real numbers that any bounded set always has a well-
defined supremum or least upper bound. This is basically the way mathematicians try
to avoid having gaps in the real number line. For this reason, the axiom requiring the
existence of least upper bounds for bounded sets of real numbers is called the axiom
of completeness as well as the least upper bound axiom. But this is taking us
on a bit of a tangent. The points are that (1) the existence of the supremum in the
definiton of diameter (2) relies on a mathematical axiom about the real numbers—
it’s not something you can prove and it’s something rather complicated—and (2) it
is generally possible to make a definition of diameter that makes sense.
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The Limit

The existence of the limit in (1) means the following thing:
There is a number L such that for any (small) positive real number ǫ > 0, there

is another positive real number δ > 0 having the property that whenever ‖P‖ < δ,
then

∣

∣

∣

∣

∣

L−
∑

j

f(x∗
j ) meas(Vj)

∣

∣

∣

∣

∣

< ǫ.

That is, if the largest partition piece has size/diameter smaller than δ, then (no matter
how you pick the partition subject to the size requirement and no matter how you
pick the evaluation points) then the Riemann sum will be “ǫ close” to the limit L.

If there is such a number L, then we call that number the integral:

L =

∫

V

f.

Naturally, this integral on a general object may have various interpretations as the
area, volume, or hyper-volume “under” the graph of the function f or some other
geometric quantity.

If we were to desire more technical precision, it would be useful to give conditions
on the sets V, the partitions {Vj} and the functions f : V → R for which the limit
(i.e., the limit of the Riemann sums) actually exists, so that the integral exists and is
well-defined. One condition is well-known to imply the existence of Riemann integrals
in many cases, so we mention it as a vaguely stated theorem.

Theorem 1 If V is a (closed) set on which it makes sense for a real valued function
f : V → R to be continuous, and the function f is indeed continuous, then the
Riemann integral

∫

V

f

is well-defined.

A somewhat more precise statement is given on page 896 of the Thomas Calculus
text; see also Theorem 1 in section 5.3, page 319.

2 A Difference

The integration we have introduced, even in the case where V = [a, b] is an interval,
is not exactly the same as the integration on integrals from Calc II. Also, there
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are various notions of integration on curves and surfaces in calculus that are usually
introduced with an analogous difference. To emphasize this difference, the integration
on objects we have introduced is sometimes called integration on sets as opposed
to integration on oriented sets. To see how orientation plays a role, let’s restrict to
intervals. Given an interval [a, b] it’s true that

∫ b

a

f(x) dx =

∫

[a,b]

f.

These two kinds of integrals are exactly the same. However, using the notion of
integration from Calc II, it also makes perfectly good sense to write

∫ a

b

f(x) dx (3)

and integrate “backwards” on the interval [a, b]. You will recall that there is a host of
manipulations associated with this kind of backwards integration. For example, we
know

∫ a

b

f(x) dx = −

∫ b

a

f(x) dx.

Not only is the backwards integral in (3) difficult to express as an integral on a set, but
these two kinds of integrals have different change of variables formulas. Let’s start
with a change of variables in Calc II, or what was called “u-substitution.” Quite
generally, if we have a change of variables u = ψ(x), then in Calc II we would write

∫ b

a

f(x) dx =

∫ ψ(b)

ψ(a)

f ◦ ψ−1(u)

ψ′ ◦ ψ−1(u)
du. (4)

You may not remember the formula looking this complicated. What you may re-
member is more along the following lines: From u = ψ(x), you have du = ψ′(x) dx,
so

∫ b

a

g(x)ψ′(x) dx =

∫ ψ(b)

ψ(a)

g ◦ ψ−1(u) du. (5)

If you compare, you will see that these are saying the same thing, but there is a
preconditioning of the integrand f(x) obtained by writing

g(x) =
f(x)

ψ′(x)
.
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Our point here, however, is that this formula works even when ψ(a) < ψ(b) so that
the integral you get when you change variables is a backwards integral.

The corresponding computation for integration on sets is usually expressed in
terms of a scaling factor σ, and when integrating on (unoriented) sets, the scaling
factor is always the absolute value of something. In the simple case of a change of
variables ψ : [a, b] → R, the scaling factor is

σ = |(ψ−1)′(u)| =
1

|ψ′ ◦ ψ−1(u)|
. (6)

Exercise 2 Differentiate the relation

ψ ◦ ψ−1(u) = u

to obtain the equivalent expressions for the scaling factor σ in (6). Hint: Be careful
with your differentiation and the use of the chain rule.

When ψ(a) < ψ(b), then we can use set integration to express either of the u-
substitution rules (4) or (5). For example,

∫

[a,b]

f =

∫

[ψ(a),ψ(b)]

f ◦ ψ−1(u) σ(u).

When ψ reverses the direction of the interval and ψ(b) < ψ(a), then the change of
variables formula is, superficially, a little different:

∫

[a,b]

f =

∫

[ψ(b),ψ(a)]

f ◦ ψ−1(u) σ(u).

This is where the absolute value comes in with regard to the scaling factor, since in
this case σ = −1/ψ′ ◦ ψ−1(u).
Warning: You may be used to using the “scaling factor”

1

ψ′ ◦ ψ−1(u)
du

in formula (4) when changing variables in the integral on the oriented interval [a, b],
but for integration on an interval as a set, the correct scaling factor is

σ =

∣

∣

∣

∣

1

ψ′ ◦ ψ−1(u)

∣

∣

∣

∣

.
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3 Calculation/Concrete Integration in one special

case

You may leave the discussion above with a feeling of dissatisfaction. In fact, it can
be very useful to understand the abstract notion of “integration on objects” we have
described above. There are problems that are important for engineers and other
people who use mathematics which are very difficult to work without it. On the
other hand, if one wants to compute a concrete answer, then the definition

∫

V

f = lim
‖P‖→0

∑

j

f(x∗
j) meas(Vj)

is of limited use. The same was true in Calc II, and that’s why the preponderance
of the course was spent on various “techniques” of integration. First you may have
used the Riemann sum definition to derive some simple examples like

∫

[a,b]

xn =
1

n + 1
(bn+1 − an+1),

or you may have just memorized the “power rule.” At any rate, you eventually
memorized some elementary integration formulas for powers, trigonometric functions,
and exponential functions. Then you learned other techniques, like u-substitution,
various algebraic tricks and partial fractions for rational functions, integration by
parts, and others. The definition using Riemann sums was probably lost in the
shuffle, but that definition is really what gives meaning to the rest.

The good news is that, for the most part, there is no correspondent torrent of
complicated techniques needed to integrate on sets that are more complicated than
intervals. Usually, one reduces the calculation of an integral on any set to some
equivalent calcuation involving 1-D integrals on intervals—which are then attacked
with the techniques from Calc II. As one example of this, let us consider integration
on a three-dimensional volume in a couple simple cases.

Integration on a Rectangular Parallelopiped, i.e., A Box

If

V = [a1, b1] × [a2, b2] × [a3, b3] = {(x1, x2, x3) ∈ R
3 : aj ≤ xj ≤ bj , j = 1, 2, 3}
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is a Cartesian product of three intervals and f : V → R is a continuous function
defined on V, then

∫

V

f =

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(x1, x2, x3) dx3dx2dx1.

The expression on the right is what’s called an iterated integral. It just means

First evaluate
∫ b3

a3

f(x1, x2, x3) dx3

as a 1-D integral, thinking of x1 and x2 as constants. Then take the result,
which will be a function g = g(x1, x2), and evalute the 1-D integral

∫ b2

a2

g(x1, x2) dx2 =

∫ b2

a2

(
∫ b3

a3

f(x1, x2, x3) dx3

)

dx2

thinking of x1 as a constant. Finally take the result, which will be a
function h = h(x1), and evalute the 1-D integral

∫ b1

a1

h(x1) dx1 =

∫ b1

a1

(
∫ b2

a2

(
∫ b3

a3

f(x1, x2, x3) dx3

)

dx2

)

dx1.

The fact that this technique of “iterated integrals” works is called Fubini’s Theo-
rem.

A Generalization

A version of Fubini’s theorem works for a somewhat more general region V ⊂ R
3

having the form

V = {(x, y, z) : ψ1(x, y) < z < ψ2(x, y), (x, y) ∈ U}

where U ⊂ R
2 is a region in the plane and ψ1 and ψ2 are real valued functions with

domain U satisfying ψ1 < ψ2. In this case, it is possible to express the integral of a
function f over V as the iterated integral

∫

V

f =

∫

U

(

∫ ψ2(x,y)

ψ1(x,y)

f(x, y, z) dz

)

.
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This reduction of triple/volume integrals to iterated integrals is discussed in the
Thomas text on pages 922-924. Integration on various regions U ⊂ R

2 is found
in sections 15.2-15.4.

In any case, for our purposes, the main points are:

1. It’s useful to know the theory of Riemann sums for integrals on many kinds of
objects.

2. There are ways to reduce many integrals on various objects to iterated 1-D
integrals.
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