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Given an open set U ⊂ R
n on which two real valued functions f and g are defined,

we consider here the problem of minimizing the function f subject to the constraint
g(x) = c, or more explicitly we consider minimizing f on the subset

Lc = {x ∈ U : g(x) = c}.

The consideration of this problem is standard in multivariable calculus though the
careful statement and proof of a specific result is usually considered beyond the scope
of that subject. The Thomas Calculus text, for example, does not state a result, but
rather states a “Method of Lagrange.” A necessary condition for the existence of an
interior point x0 ∈ U for which g(x0) = c and for which

f(x0) ≤ f(x) for each x ∈ Lc

is not difficult to state:

Theorem 1 (Lagrange) If x0 ∈ U ∩ Lc and f(x0) ≤ f(x) for every x ∈ Lc, then
either ∇g(x0) = 0, or there is some real number λ for which

∇f(x0) = λ∇g(x0).

Naturally, differentiabiltiy of f and g is required. A heuristic explanation for why the
result holds is also relatively easy to give, at least when n = 2. Let us give such an
explanation.

The first ingredient is a precise qualitative understanding of the behavior of a
differentiable function at a point x0 in terms of its rate of change in various directions,
i.e., directional derivatives. When n = 2, there is a tangent plane at x0. One must
be careful here. Especially a student of elementary calculus must be careful here. I do
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Figure 1: the tangent plane to a domain in R
2

not mean the tangent plane to the graph of the function, which is a plane in R
3, but

rather a plane to the domain of the function. For various reasons, this notion presents
itself as rather abstract and, perhaps, esoteric. Let us try to be rather precise and
take some time to understand it.

Tangent plane to a domain

Let f : U → R
1 be a real valued function defined on an open set U ⊂ R

2 with a
point x0 ∈ U . The set U may not be the entire plane R

2, as indicated on the left in
Figure 1, but we can take a line segment starting at x0 ∈ U in the direction v and
find a point x0 + tv which is outside of U . Such a point is still in the tangent plane
to U at the point x0. I hope it is clear that, as we look at Figure 1, three distinct
sets are under consideration:

1. The ambient space R
2,

2. the domain U which is a subset of R
2, and

3. the tangent plane at x0 to U .
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Figure 2: the tangent plane to a domain U in a surface S

The tangent plane coincides with the ambient space R
2 as a set, but it is natural, and

it can be useful, to think of these two conincident sets as distinct.
A second way which may be helpful to distinguish the ambient space R

2 and
the tangent plane Tx0

U to U at x0 is by introducing distinct coordinates on each
set. One can see the origin in R

2 indicated in Figure 1, and the coordinates of
the point x0 in the figure are given by x0 = (4, 2). In the tangent space to U ,
we may introduce coordinates in which x0 is the origin, and the coordinates of the
displacement tv ∈ Tx0

U are given by tv = (2, 4). Thus, the ambient space is a
space of points while the tangent space is a space of displacements from points. In
particular, Tx0

U is the space of displacements v from the point x0. A point x0 + tv
obtained by displacement from x0 ∈ U is in the ambient space R

2 but may or may
not be in U depending on the displacement tv.

Just in case the distinction we are making between the tangent plane to U and the
ambient space R

2 is not clear, we can further illustrate the distinction by modifiying
the domain and its ambient space in a dramatic way. In Figure 2 we have warped the
ambient space R

2 of Figure 1 so that it curves downward in all directions at x0 away
from the tangent plane. The open set U follows the bending of the ambient space,
but the tangent plane remains essentially in place. Now the distinction between
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the ambient space S and the tangent plane Tx0
U is clear. On the right we have

zoomed in for a close up near the point x0. The ambient space is now a surface
S in R

3, and the coordinates of x0 may be taken to be x0 = (4, 2, 0). The point
x0 + tv is only in the ambient space S when t = 0. We have indicated the unit
disk in the tangent space on the right and on the left. It is still natural to use the
coordinate expressions tv = (2, 4) and v = (1, 2)/

√
5 in the tangent space. But an

adjustment of coordinates will now be required to add displacements: The particular
point x0 + tv = (4, 2, 0) + (2, 4, 0) = (6, 6, 0) is in a plane in R

3 which coincides with
the tangent plane.

Now, let us return to our focus on the tangent plane to U in Figure 1. The gradient
vector gives a direction of maximum increase of the values of f . The normal line to
this vector divides the tangent plane into two half spaces. Let us take u1 = Df/|Df |
and u2 the rotation by π/2 counterclockwise of u1. Then every unit vector in the
tangent plane may be expressed as

v = cos θ u1 + sin θ u2

where θ is some angle. Then

Du1
f(x0) = Df(x0) · u1 = |Df(x0)| > 0 and Du2

f(x0) = Df(x0) · u2 = 0.

More generally, the directional derivative in the direction v = cos θ u1 + sin θ u2 is
given by

Dvf(x0) = cos θDf(x0) · u1 + sin θDf(x0) · u2 = cos θ|Df(x0)|.

This gives us a very precise understanding of the directional derivatives Dvf(x0).
Moving around the unit circle in Tx0

U , there is exactly one maximum direction along
u1; there are exactly two directions yielding zero directional derivative, namely ±u2.
Thus, the line in Tx0

U determined by the direction u2 divides the tangent plane into
two half planes. The half plane into which Df(x0) points consists of directions in
which f increases to first order. The other half plane consists of directions in which
the corresponding directional derivative of f is negative. Let us call this line the
dividing line:

Z = {x0 + tu2 : t ∈ R} ⊂ Tx0
U .

There is one situation in which our discussion is not valid. That is when the
gradient vanishes. We can consider this case in more detail later, but for now simply
note that if Df(x0) = (0, 0), the conclusion of Theorem 1 is easily seen to hold with
λ = 0.
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Figure 3: a level curve Lc = {x : f(x) = c} when Dg(x0) and Dg(x0) are not parallel

Now, we are in a position to see, heuristically, why the theorem holds. If Dg(x0) 6=
0, then we expect the level set Lc near x0 will be a differentiable curve as shown in
Figure 3. Moreover, if Dg(x0) is not parallel to Df(x0), then the curve will cross the
dividing line Z at x0 and determine a direction w which is not tangent to Z. Let us
assume we can parameterize the level set locally by a function r : (−ǫ, ǫ) → U with
r(0) = 0 and r′(0) = w. (Here ǫ is just some positive number.) Then the tangent
vector to Lc is w = r′(0) as indicated in Figure 3, and the tangent line to Lc at x0 is

W = {x0 + tr′(0) : t ∈ R} ⊂ Tx0
U .

Again, we have zoomed in to the point x0 on the right in Figure 3, and in this case,
it’s clear that at least one of the directions along Lc will enter the region where f has
values smaller than f(x0). To be precise, we can find r so that r′(0) = w = au1 + bu2

with a < 0 and

d

dt
f(r(t))∣

∣

t=0

= Df(x0) · r′(0) = Df(x0) · w = Dwf(x0) = a|Df(x0)| < 0.

This means that for 0 < t < ǫ with t small

f(r(t)) < f(x0).

Since r(t) ∈ Lc, this means x0 cannot be a (local) minimum point.
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Making this heuristic argument rigorous

The deficiency of the argument above centers mainly on the assumption that Lc is
a differentiable curve. More broadly the distinction between a differentiable curve
as a set and as a mapping r : (−ǫ, ǫ) → R

2 is usually not addressed carefully in an
elementary calculus course. Thus, there is a substantial gap in rigor between the
assumption that x0 is a minimum point in Lc and the existence of a corresponding
curve parameterized by r : (−ǫ, ǫ) → U leading to lower values of f taken on Lc unless
Dg(x0) and Df(x0) are parallel.

These questions are usually addressed in a course on differential geometry and
require an application of the inverse function theorem or the closely related implicit
function theorem, neither of which is usually covered in elementary calculus. I will
not cover all this material here. But I will state, for the benefit of precocious and
interested students of elementary calculus, a result that can be used to make our
heuristic argument rigorous.

It should first be noted that the level set Lc need not be a differentiable curve. If,
for example, g(x, y) = (x−4)2− (y−2)2 and c = 0, it is easy to see L0 consists of two
intersecting straight lines. This situation, in contrast to the hopeful representation of
Figure 3, does not give that L0 is a differentiable curve in any neighborhood of (4, 2).
In fact, the set Lc may not even contain a differentiable curve. One runs into this
problem if g(x, y) = −(x−4)2−(y−2)2 and, again, c = 0. These observations explain
the appearance of the alternative case Dg(x0) = 0 in the statement of Theorem 1.
The standard result invoked to prove the main case is the following:

Theorem 2 If g : U → R
1 satisfies g ∈ C1(U) and Dg(x0) 6= 0 for some x0 ∈ Lc ⊂

U , then there is some open ball Br(x0) such that Lc ∩ Br(0) is a regular curve,
that is, for each point p ∈ Lc ∩ Br(0), there is some ǫ > 0 and some C1 function
r : (−ǫ, ǫ) → Lc such that r(0) = p and r′(t) 6= 0 for −ǫ < t < ǫ. Moreover, if we
take a particular parameterization, then there is some ρ > 0 with 0 < ρ < r and some
a and b such that −ǫ < a < 0 < b < ǫ such that Lc ∩ Bρ(0) = {r(t) : a < t < b}.

As in the discussion above, U is an open set in R
2. Recall that the open ball is defined

by Br(x0) = {x : |x − x0| < r}. The condition g ∈ C1(U) means the first partial
derivatives of g exist and are continuous on U . The C1 condition on r means r′ exists
and is continuous on (−ǫ, ǫ).

Once Theorem 2 is established, the connection between the values of points in Lc

near x0 and the directional derivative in the tangent direction w = r′(0) at x0 follows
easily as described in the previous section.
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Higher dimensions n > 2

Some new ideas are involved in the discussion of the higher dimensional cases, but
the basic ideas still work. Let us consider n = 3. As above, we may assume

Df(x0) 6= 0 and Dg(x0) 6= 0.

The condition on Df(x0) serves to separate Tx0
U (which is now a three dimensional

space) into two half spaces H+, into which Df(x0) points, and H−. Displacements
into H+ correspond to increasing values of f . Displacements into H− correspond to
decreasing values of f . There is now an entire plane of directions in Tx0

U , separating
H− and H+, where the directional derivatives vanish:

Dvf(x0) = 0 whenever v · Df(x0) = 0.

We have then a dividing plane

Z = {v ∈ Tx0
U : v · Df(x0) = 0}.

Theorem 3 If g : U → R
1 satisfies g ∈ C1(U), where U is an open set in R

3, and
Dg(x0) 6= 0 for some x0 ∈ Lc ⊂ U , then there is some open ball Br(x0) such that
Lc ∩ Br(0) is a regular surface. In particular, if we take r > 0 small enough, then
there is an open set V ⊂ R

2 and a C1 parametric (surface) mapping X : V → R
3

such that X = X(u, v) satisfies
Xu × Xv 6= 0

and
Lc ∩ Br(x0) = {X(u, v) : (u, v) ∈ V}.

If Dg(x0) is not parallel to Df(x0), then there will be a tangent direction w in Tx0
U

which points into H−. There will also be a parameterized curve r : (−ǫ, ǫ) → Lc

(taking values in the surface Lc) such that r(0) = x0 and r′(0) = w. Again, the
values f(r(t)) for t small and positive will be smaller than f(x0) because r(t) ∈ Lc

and
d

dt
f(r(t))∣

∣

t=0

= Df(x0) · w < 0.

For n > 3 the dividing hyperplane

Z = {v ∈ Tx0
U : v · Df(x0) = 0}

is an n − 1 dimensional subspace of Tx0
U ≈ R

n separating the increasing directions
for f from the decreasing ones. There is a higher dimensional analogue of Theorem 3,
and the argument goes pretty much as before.
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Review/statement of the proof

Let U ⊂ R
n be an open set, and let f and g be C1 functions defined on U . Finally,

let
Lc = {x ∈ U : g(x) = c}.

Theorem 4 (Lagrange) If x0 ∈ U ∩ Lc and there is some r > 0 such that f(x0) ≤
f(x) for every x ∈ Lc ∩Br(x0), then either ∇g(x0) = 0, or there is some real number
λ for which

∇f(x0) = λ∇g(x0).

Proof: If ∇f(x0) = 0 or ∇g(x0) = 0, then the result clearly holds. Thus, we may
assume ∇f(x0) 6= 0 and ∇g(x0) 6= 0. If ∇g(x0) is not parallel to ∇f(x0), i.e., there
is no λ ∈ R such that ∇f(x0) = λ∇f(x0), then in some neighborhood of x0, the level
set Lc is a C1 hypersurface and there is a nonzero vector w ∈ Tx0

Lc such that

w ∈ H− = {v ∈ Tx0
U : v · ∇f(x0) < 0}.

Moreover, there is a C1 curve r : (−ǫ, ǫ) → Lc with r(0) = x0 and r′(0) = w. It
follows that

d

dt
f(r(t))∣

∣

t=0

= Dwf(x0) < 0.

Hence there are points r(t) ∈ Lc arbitrarily close to x0 with f(r(t)) < f(x0). This
contradiction shows that ∇f(x0) and ∇g(x0) are parallel. �

Exercise 1 There is one point, aside from the proofs of Theorems 2 and 3, on which
some detail could be added. This point should be accessible to students of elementary
calculus with some knowledge of linear algebra. It is claimed, for example in the proof
above, that the vector w ∈ Tx0

Lc pointing into H− exists. Let w be the projection of
−∇f(x0) onto Tx0

Lc, and show that this choice gives the desired vector. Hint: As a
vector in Tx0

U
−∇f(x0) = (−∇f(x0) · n)n + w

can be written uniquely as a component along n = ∇g(x0)/|∇g(x0)| and a component
orthogonal to n.
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