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It may be helpful to have a discussion of the moments of an extended body which
is more general and a little more physically motivated than the one in the Thomas
Calculus text.

Preliminaries:

Kinetic Energy of a Moving Point Mass

If a certain mass m is concentrated at a point x (an idealization called a point mass),
then the associated kinetic energy is said to be given by

K.E. =
1

2
m|v|2 where v =

dx

dt
. (1)

This kinetic energy is sometimes called the translational kinetic energy.
As a special case, we can imagine a point mass rotating with angular velocity ω

about an axis. Let’s say the axis is along a line ℓ(t) = p0 + tw through a point p0 in
the direction w, and the rotating point mass is rotating in a plane orthogonal to this
axis spanned by unit vectors u1 and u2 which are orthogonal to w. In this case, we
should have

x(t) = p0 + t0w + r(t) = p0 + t0w + r(cos(θ0 + ωt), sin(θ0 + ωt)) (2)

where r = r(t) = r(cos(θ0 + ωt), sin(θ0 + ωt)) is a vector valued function of constant
modulus r = |r|, and θ0 is some initial angle with respect to the plane {p0 + t0w +
αu1 + βu2 : (α, β) ∈ R

2}. From the expression (2), the velocity and kinetic energy
are easy to compute:

dx

dt
= ωr(− sin(θ0 + ωt), cos(θ0 + ωt)) and K.E. =

1

2
mr2ω2.
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It will be noted that this expression for the rotational kinetic energy can be
interpreted as having the same form as the translational kinetic energy but with the
linear velocity |v| replaced by the angular velocity ω and the mass replaced by the
quantity mr2 which depends on the radial distance r from the axis. The notion of
moments is very much motivated, if not based, on this kind of parallel structure

interpretation of quantities.
Before we move on from point masses, let us make a couple simple observations. If

we have a finite number of point masses, say two of them m1 and m2, with positions x1

and x2 respectively, then it makes good sense to consider the total kinetic energy

of the system composed of these masses. The translational kinetic energy is just the
sum

1

2
m1|v1|

2 +
1

2
m2|v2|

2.

This holds no matter how the point masses may be moving in space. As we have
described it, the rotational kinetic energy of a particle only makes sense with respect
to a given axis. The axis may move (if the object is translating for example), but the
expression we have used above requires the relation (x − q0) · w = 0 for some point
q0 = p0 + t0w in the axis of rotation. Consequently, we must assume our system
of point masses is coherently rotating about a single axis. (Technically, we could
assume a different axis for each point mass, but we definitely need rotation of each
mass about some axis.) Under this coherence of rotation it makes sense to talk
about the total rotational kinetic energy, and the value is again just a sum

1

2
m1r

2

1
ω2

1
+

1

2
m2r

2

2
ω2

2
.

Distributed Mass: Density

A more realistic representation of a physical object which can move through space is
given by assigning a density function ρ : V → [0,∞) to a geometric volume V in
space. The units of a quantity can be useful to consider and are often denoted by
putting square brackets around the quantity:

[ρ] =
M

L3
.

This means that density is measured in units of mass per volume. (Volume has
units length cubed.) In such a situation, the total mass is obtained as the limit of a
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Riemann sum, that is to say, an integral:

m = lim
‖P‖→0

∑
j

ρ(x∗
j ) vol(Vj) =

∫
V

ρ

where ‖P‖ is the norm of a partititon P = {Vj} of the volume V as usual. Similarly,
the total kinetic energy of a translating object modeled in this way is the limit of the
sum of the kinetic energies associated with the small portions Vj of a partition P of
V:

K.E. = lim
‖P‖→0

∑
j

1

2
ρ(x∗

j ) vol(Vj)|v|
2 =

1

2

∫
V

ρ|v|2

so we obtain the same formula (1). This is under the assumption that every portion of
the object is moving with the same linear velocity v and that kinetic energy associated
with the small volume Vj is approximately that of a point mass mj = ρ(x∗

j ) vol(Vj)
translating with that velocity.

The model we have described using a volume with a density is called an extended

body, and the density is called a volumetric density. The same idea can be applied
to what is called a lamina which is a two dimensional version of the same thing. In
the case of a lamina, one is given a planar object (or a surface) with a density ρ with
units

[ρ] =
M

L2
.

A density with these units is called an areal density. The mass of a lamina is, of
course, given by

m =

∫
U

ρ.

(Incidentally, the mass computed in either of these ways is called a zero order moment
of the extended body or lamina.)

We can try to make the same calculation of rotational kinetic energy for an ex-
tended body. Let us assume that every portion of the extended body is rotating with
angular velocity ω about the same axis. In particular, each piece Vj of a partition has
kinetic energy approximately that of a point mass mj = ρ(x∗

j ) vol(Vj) with position
x∗

j rotating about the axis with angular velocity ω, that is,

1

2
mjr

2

jω
2 =

1

2
ρ(xj) vol(Vj)r

2

jω
2
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where r∗j = |x∗
j − q∗

j | is the radial distance from x∗
j to the axis of rotation. Taking a

sum and the limit as the norm of the partition tends to zero, we find

K.E. =
1

2

∫
V

r2ρ ω2.

Thus, for extended bodies, the mass is replaced by something more complicated.

K.E. =
1

2
I ω2 where I =

∫
V

r2ρ.

The quantity I is called the moment of inertia or second moment of the extended
body with respect to its axis of rotation. This quantity takes the place of the mass
(when the angular velocoity ω takes the place of the linear velocity |v|). It should be
noted that the radius of rotation r is a function defined on the volume, or extended
body, V representing the object. So the integrand is a product of two functions r(x)2

and ρ(x).

Force and Newton’s Law

You might notice that we talked about a zero moment (i.e., the mass of an extended
body or lamina) and the second moment of an extended body, and the discussion
of the second moment can be easily extended to apply to a lamina as well. You might
be wondering about the first moment.

Remember that Newton’s second law asserts F = ma. We usually think of this as
applied to a point mass with position x so that it reads

F = m
d2x

dt2
. (3)

Our objective is to find an appropriate version of Newton’s second law, applying to
an extended body, which demonstrates parallel structure with (3).

It makes sense to add up forces over an extended body in the following context:
Say you have a force density field which is a vector field G with units

[G] =
F

M
=

L

T 2

where F represents “force” and has units ML/T 2. You have this kind of thing with
the gravity field G = (0, 0,−g). So if you take a point mass m in space (near the
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earth) it experiences a downward gravitational force F = (0, 0,−mg). More generally,
if you have such a force field in space, then it makes sense to add up the forces on
the partition pieces of an extended object to get an approximate total force on the
object: ∑

j

ρ(x∗
j ) vol(Vj)G(x∗). (4)

Taking the limit, we get an integral quantity representing the total force on the object:

F =

∫
V

ρG.

On the other hand, we can apply Newton’s second law to each piece to get an ap-
proximate equation

ρ(x∗
j ) vol(Vj)G(x∗) ≈ ρ(x∗

j) vol(Vj)
d2x∗

j

dt2
.

Exercise 1 Substitute this expression into the Riemann sum (4) and conclude that

F =
d2

dt2

∫
V

xρ. (5)

The components of the integral ∫
V

xρ

are called the first moments of the extended body. Write down the three first mo-
ments of an extended body, and use (5) along with familiar formulas to give an ex-
tended body interpretation with a structure parallel to (3). Hint: Define x̄ appropri-
ately so that (5) takes the form

F = m
d2x̄

dt2
.

5


