
Math 2550, Final Exam PRACTICE Name and section:

Note: This practice exam has (roughly) two problems from each chapter covered in the
course (Chapters 12-15 of Thomas’ Calculus). Each of the eight problems is scored for 10
points; you start with 20 points (free) for a total possible score of 100.

1. (10 points) (12.3-5) Let u = e1 = (1, 0, 0) and v = −e1/2 +
√

6 e2/4 +
√

6 e3/4.

(a) Find v · u.

(b) Find |v|.

(c) Find the angle between v and u.

(d) Find the scalar component of v in the direction of u.

(e) Find the vector proj
u
v.

(f) Find the area of the parallelogram spanned by u and v.

(g) Find a vector w for which u, v, and w are the vertices of an equilataral triangle.

(h) Find the equation of the plane P determined by u, v, and w.

(i) Find parametric equations for the line L through the origin and orthogonal to the
plane P .

(j) Eliminate the parameter in the parametric equations for L to obtain a system of
equations for the line L.



Name and section:

Solution:

(a) −1/2

(b) 1

(c) cos θ = −1/2, so θ is an angle in the second quadrant with reference angle
π − θ = π/3. Therefore, θ = 2π/3.

(d) −1/2

(e) (v · u/|u|)u/|u| = (−1/2)u = −e1/2 = (−1/2, 0, 0)

(f) |u × v| = | − e1 × e1/2 +
√

6 e1 × e2/4 +
√

6 e1 × e3/4| =
√

6 |e3 − e2|/4 =√
6
√

2 /4 =
√

3/2.

(g) Notice from part (b) that |u| = |v| = 1 and that from part (c) that the angle
between u and v is 2π/3. This means that the u, v, and the origin o = (0, 0, 0)
form a triangle which is a part of an equilateral triangle with vertices u and v

and center/centroid at the origin. Notice that the vertex w will lie in the plane
x = −1/2 along with v, and the projections of v and w into the y, z-plane will
be symmetric with respect to the origin. That is,

w = −e1/2 −
√

6 e2/4 −
√

6 e3/4.

This is probably the easiest way to find a vector w that will work. If one does
not notice that the origin can be the center of the triangle, then you probably
will have to work harder along the following lines:

There is a circle of vectors w that will work. The center of that circle is

p = (u + v)/2 = e1/4 +
√

6 e2/8 +
√

6 e3/8,

and the radius is the height of the equilateral triangle. Since the side of the
equilateral triangle has length |u − v| =

√

9/4 + 3/4 =
√

3, the height is r =

(
√

3/2)
√

3 = 3/2. The circle lies in the plane orthogonal to

u− v = 3e1/2 −
√

6 e2/4 −
√

6 e3/4

and through the point p. So we need an orthonormal basis spanning the plane
of the circle. That plane is

{x : (x − p) · (u− v) = 0}.

This equation is

x ·
(

3

2
,−

√
6

4
,−

√
6

4

)

= p · (u− v) =
3

8
− 3

8
= 0.
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The fact that p · (u − v) turns out to be zero should probably alert you to
the fact that something is up. In particular, this means the origin is on a
line which could contain the centroid. (In fact it could be the centroid.) But
let’s say we don’t notice that. We’re still in a position to look for vectors
x having the property that x · (u − v) = 0. And we’ve just found one of
them, namely, p. Thus, we can take one vector in our orthonormal basis to be
a = p/|p| = e1/2 +

√
6 e2/4 +

√
6 e3/4 since |p| = 1/2. Now, we can compute

(u − v) × a to get a second orthonormal basis vector:

16(u− v) × a = (6e1 −
√

6 e2 −
√

6 e3) × (2e1 +
√

6 e2 +
√

6 e3)

= 6
√

6 e3 − 6
√

6e2 + 2
√

6 e3 − 6e1 − 2
√

6 e2 + 6e1

= −8
√

6 e2 + 8
√

6 e3.

Thus, we may take b = (−e2 + e3)/
√

2. Therefore, every vector w that can be
used has the form

w = p + (3/2)[(cos θ)a + (sin θ)b]. (1)

The choice θ = π should give us the vertex for which the origin is the centroid,
namely p− (3/2)a. And indeed, it’s easy to check that this is the “easy” value
of w we found above. But again, any of the vectors given in (1) can the the
third vertex of an equilateral triangle along with u and v. So, we’ll give the rest
of the answers in terms of an arbitrary value of θ and then specialize to θ = π
for the “obvious” one.

(h) To get a plane, we need a normal. If we are able to visualize the situation
geometrically and make the easiest choice of w in the previous part, then we
have the origin o as centroid of the triangle, and we can take as normal u×v =√

6(e3 − e2)/4 which was computed in part (f). This gives the normal e2 − e3

and the plane through e1

(x − e1) · (e2 − e3) = 0 or y = z.

If we do not visualize the geometry, life becomes harder:

We know u−v lies in the plane, so we can find a normal by crossing u−v with
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w − v:

(w − v) × (u− v) =

[(

e1

4
+

√
6 e2

8
+

√
6 e3

8

)

+
3 cos θ

2

(

e1

2
+

√
6 e2

4
+

√
6 e3

4

)

+
3 sin θ

2

(

− e2√
2

+
e3√
2

)

−
(

−e1

2
+

√
6 e2

4
+

√
6 e3

4

)]

×
(

3e1

2
−

√
6 e2

4
−

√
6 e3

4

)

=

[(

3e1

4
−

√
6 e2

8
−

√
6 e3

8

)

+
3 cos θ

2

(

e1

2
+

√
6 e2

4
+

√
6 e3

4

)

+
3 sin θ

2

(

− e2√
2

+
e3√
2

)]

×
(

3e1

2
−

√
6 e2

4
−

√
6 e3

4

)

=

(

−3
√

6 e3

16
+

3
√

6 e2

16
+

3
√

6 e3

16
+

3e1

16
− 3

√
6 e2

16
− 3e1

16

)

+
3 cos θ

2

(

−
√

6 e3

8
+

√
6 e2

8
− 3

√
6 e3

8
− 3e1

8
+

3
√

6 e2

8
+

3e1

8

)

+
3 sin θ

2
√

2

(

3e3

2
+

√
6 e1

4
+

3e2

2
+

√
6 e1

4

)

=
3
√

3 sin θ

4
e1

+

(

3
√

6 cos θ

4
+

9 sin θ

4
√

2

)

e2

+

(

−3
√

6 cos θ

4
+

9 sin θ

4
√

2

)

e3.
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Thus, we can take as a normal

N = 3
√

3 sin θ e1 +

(

(3
√

6 cos θ +
9 sin θ√

2

)

e2 +

(

−3
√

6 cos θ +
9 sin θ√

2

)

e3,

and the equation of the plane P (noting that it passes through u = e1 is

(x − e1) · N = 0

or

3
√

3 sin θ x+

(

(3
√

6 cos θ +
9 sin θ√

2

)

y+

(

−3
√

6 cos θ +
9 sin θ√

2

)

z = 3
√

3 sin θ.

In the special case θ = π, this simplifies to

y − z = 0

or simply y = z. Which can be easily checked for the simple choice of w.

One may note that in the computation of the cross product above to get the
normal, all the terms without a factor cos θ or a factor sin θ vanish. This should
not be a surprise because this amounts to the assertion that (p − v) × (u − v)
vanishes, which is no surprise because p is the midpoint between u and v, so
obviously these two vectors are parallel.

(i) Since we have the normal N , the parametric equation for L is simply ℓ(t) =
o + tN = tN . That is, in the general case

x = 3
√

3 sin θ t

y =

(

3
√

6 cos θ +
9 sin θ√

2

)

t

z =

(

(−3
√

6 cos θ +
9 sin θ√

2

)

t.

When θ = π, this can be simplified to

x = 0

y = t

z = −t.

(j) By the first equation

t =
1

3
√

3 sin θ
x
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as long as θ is not an integer multiple of π. In this case, the line L may be
expressed as the intersection of planes

y =
3
√

6 cos θ + 9 sin θ√
2

3
√

3 sin θ
x and z =

−3
√

6 cos θ + 9 sin θ√
2

3
√

3 sin θ
x

or
2y = (2

√
2 cot θ +

√
6) x and 6z = (−2

√
2 cot θ +

√
6) x.

If sin θ = 0, then L may be written as the intersection of planes x = 0 and

y + z = 0.

This holds, in particular, in the simplest case θ = π.

Remark: When I wrote this problem, I did not contemplate the possibility of a different
choice of third vertex w and how difficult the last four parts would become if one did not
see the obvious choice/answer. Perhaps the problem should be amended for the visually
challenged to include a hint in part (g): You can take the origin as centroid.
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2. (10 points) (12.6) Give a precise drawing of the surface associated with the relation
within the square prism [−1, 1] × [−1, 1] × R. (Make a reasonably good drawing, and
label the boundary values, intercepts, etc..)

(a) z = x2 + y2.

(b) z2 = x2 + y2



Name and section:

Solution:

(a) This is a paraboloid.

(b) This is a cone.
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3. (10 points) (13.1-2) Two children play catch with a baseball on a 30 degree incline with
one directly downhill from the other.

(a) If w is the maxiumum velocity with which the ball can be thrown from the downhill
side, what is the maximum distance up the hill (along the grade) the ball can be
thrown. (You may assume either metric units with the acceleration due to gravity
9.8 m/s2 or English measurement with g = 32 feet/s2. You may assume the ball is
caught at precisely the same distance from the ground (along grade) from which it
is released/thrown.)

(b) If W is the maximum velocity with which the ball can be thrown downhill, what is
the maximum distance down the hill the ball can be thrown?
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Solution:

(a) View the downhill side on the left and the uphill side on the right with x
measuring horizontal distance. Assume the launch angle is θ > π/6 measured
from the horizontal x-axis. Then we have ẋ = w cos θ and ẏ = w sin θ−gt. This
means the path of the ball is parameterized as a function of time by

r(t) = (wt cos θ, wt sin θ − gt2/2).

We first seek the time, when the ball is caught. This is the first positive time t
when

wt sin θ − gt2/2

wt cos θ
=

w sin θ − gt/2

w cos θ
= tan(π/6) = 1/

√
3.

That is,

t =
2w

g

(

sin θ − cos θ√
3

)

.

Next, we find the angle θ for which wt cos θ is maximum at this time. That is,
we maximize the horizontal distance

d1 =
2w2

g
cos θ

(

sin θ − cos θ√
3

)

as a function of θ. We can ignore the constant factor 2w2/g for the moment,
differentiate with respect to θ, and attempt to solve

− sin θ

(

sin θ − cos θ√
3

)

+cos θ

(

cos θ +
sin θ√

3

)

= cos2 θ−sin2 θ+
1√
3

sin(2θ) = 0.

That is, cos(2θ) + sin(2θ)/
√

3 = 0, or

tan(2θ) = −
√

3.

We conclude the optimal angle for the throw (from the horizontal) satisfies
2θ = 2π/3. Therefore, the best angle for the throw is π/3, or 60 degrees,
precisely twice the angle of the slope and the angle bisecting the angle between
the slope and the vertical for the downhill player. (One of these characterizations
always holds no matter what the angle of the hill—can you guess which one?
Can you prove it?)

Now we can compute directly d1/ cos(π/6) = 2d1/
√

3 with θ = π/3. It may be
helpful to observe that d1 may be expressed in terms of 2θ as

d1 =
w2

g

(

sin(2θ) − cos(2θ) + 1√
3

)

.

Either way, the horizontal distance with θ = π/3 is d1 = w2(
√

3/2 −
√

3/6)/g,
so the maximum distance along grade is

2d1√
3

=
2√
3

(

w2
√

3

3g

)

=
2w2

3g
.
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(b) We repeat the procedure above looking from the other side, so the positive
x-axis points in the downhill direction:

Now the launch angle is θ > −π/6. The equation for the time of flight is

Wt sin θ − gt2/2

wt cos θ
=

w sin θ − gt/2

W cos θ
= tan(−π/6) = −1/

√
3

with solution

t =
2W

g

(

sin θ +
cos θ√

3

)

.

Differentiating as before (taking account of the sign change in the expression
for the maximum horizontal distance d2, we find the optimal angle satisfies
cos(2θ)− sin(2θ)/

√
3 = 0 or tan(2θ) =

√
3. This means θ = π/6. Plugging back

into the expression for d2, we get

d2 =
2W 2

g
cos θ

(

sin θ +
cos θ√

3

)

=
W 2

g

(

sin(2θ) +
cos(2θ) + 1√

3

)

=
W 2

√
3

g
.

Hence, the max downhill throw has distance along grade

d2

cos(π/6)
=

2d2√
3

=
2W 2

g
.

The uphill player (of equal arm strength/initial throwing velocity W = w) can
throw three times farther. In order to have a good match for playing catch
on this hill, perhaps the uphill thrower should have a stronger throw so that
w = W

√
3.
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4. (10 points) (13.3-4) Let r(t) = (3 sin t, 3 cos t, 4t) parameterize a curve in R3.

(a) Reparameterize the curve by arclength.

(b) Find the curvature vector at each point on the image curve.
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Solution:

(a) r′ = (3 cos t,−3 sin t, 4) and |r| = 5, so s = 5t, and a reparameterization by
arclength is

γ(s) =

(

3 sin
s

5
, 3 cos

s

5
,
4s

5

)

.

(b)

γ′ =
1

5

(

3 cos
s

5
,−3 sin

s

5
, 4
)

and the curvature vector is

γ′′ = − 3

25

(

sin
s

5
, cos

s

5
, 0
)

.
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5. (10 points) (14.1-3) Verify that the function

u(x, y, z) = e3x+4y cos(5z)

satisfies Laplace’s partial differential equation:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.
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Solution:

∂u

∂x
= 3e3x+4y cos(5z),

∂u

∂y
= 4e3x+4y cos(5z), and

∂u

∂z
= −5e3x+4y sin(5z).

∂2u

∂x2
= 9e3x+4y cos(5z),

∂2u

∂y2
= 16e3x+4y cos(5z), and

∂2u

∂z2
= −25e3x+4y cos(5z).

Therefore,
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= (9 + 16 − 25)e3x+4y cos(5z) = 0.
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6. (10 points) (14.1-8) Identify the maximum and minimum points for the function f(x, y) =
xy on the circle x2 + y2 = 10.
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Solution: Let’s use the method of Lagrange multipliers. Setting g(x, y) = x2+y2 we
note that ∇g = (2x, 2y) 6= (0, 0) on the circle. Furthermore, ∇f = (y, x), so we look
for a constant λ and a point (x, y) for which ∇f(x, y) = λ∇g(x, y) and x2 + y2 = 10.
The gradient conditions give

{

y = 2λx
x = 2λy.

Noting that it is not possible to have a solution of this system with either x = 0 or
y = 0, we can eliminate λ by dividing the last two equations:

y

x
=

x

y
.

From this, we conclude x2 = y2. Thus, there are four such points on the circle
represented by (±

√
5,±

√
5). If x and y have the same sign, we can take λ = 1/2

and get a full solution, and if x and y have opposite signs, we can take λ = −1/2
and get a solution. Thus, all four points are solutions of this system. In the former
case, f(x, y) = 5 corresponding to two

maximum points: (
√

5,
√

5) and (−
√

5,−
√

5).

If x and y have opposite signs, we get two

minimum points: (
√

5,−
√

5) and (−
√

5,
√

5).
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7. (15.1-4) Evaluate the iterated integral

∫

0

−1

∫

0

−
√

1−x2

2

1 +
√

x2 + y2
dydx.
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Solution: This is integration over the quarter disk in the third quadrant. The result
should be the same as integration over the quarter disk in the first quadrant, but
we’ll work make both calculations (using polar coordinates in both of them). Over
the given quarter disk, we get

∫

1

0

∫

3π/2

π

2r

1 + r
dθdr =

π

2

∫

1

0

2r

1 + r
dr

= π

∫

1

0

(

1 − 1

1 + r

)

dr

= π (1 − ln 2) .

Since there is no θ dependence in the integrand, the integral over the quarter disk in
the first quadrant is essentially the same:

∫

1

0

∫ π/2

0

2r

1 + r
dθdr =

π

2

∫

1

0

2r

1 + r
dr

= π

∫

1

0

(

1 − 1

1 + r

)

dr

= π (1 − ln 2) .
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8. (10 points) (15.1-8) A plate is modeled by the region

U = {(x, y, 0) ∈ R3 : b2x2 + a2y2 < a2b2}

along with an areal density δ = 1 + bx2 + a2y2 in the given coordinates where a and
b are positive constants. If one models uniform rotation of this plate about the z-axis
with angular velocity ω = 5 radians per second, calculate the kinetic energy of rotation.
Hint: Use the relations x = ra cos θ and y = rb sin θ to change variables.
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Solution: First of all, the change of variables reparameterizes the plate on the unit
disk in polar coordinates which is a rectangle

R = [0, 1) × [0, 2Pi) = {(r, θ) : 0 ≤ r < 1, 0 ≤ θ < 2π}.

We can go ahead and calculate the scaling factor:

σ =

∣

∣

∣

∣

a cos θ −ra sin θ
b sin θ rb cos θ

∣

∣

∣

∣

= abr.

The kinetic energy is Iω2/2 = 25I/2 where I is the moment of inertia.

I =

∫

U
δr2

=

∫

R
(1 + a2b2r2)r2σ

=

∫

1

0

∫

2π

0

(1 + a2b2r2)r2abr dθdr

= 2abπ

∫

1

0

(r3 + a2b2r5) dr

= 2abπ(1/4 + a2b2/6)

= abπ(1/2 + a2b2/3).

Thus, the kinetic energy is

K.E. =
25abπ

6
(3 + 2a2b2).


