1. (20 points) (12.3.16) Two rods are arranged end to end. We choose coordinates so that the first rod has an end A at the origin, with the other end B in the first quadrant of the x, y-plane, and makes an angle of $\pi / 6$ with the positive x-axis. The second rod has an end at $B=\left(b_{1}, b_{2}, b_{3}\right)$, lies in a plane parallel to the y, z-plane, and makes an angle of $\pi / 4$ with the horizontal plane through B in such a way that the other end $C=\left(c_{1}, c_{2}, c_{3}\right)$ satisfies $c_{2}>b_{2}$ and $c_{3}>b_{3}$. Find the angle between the two rods.

Solution:

The coordinates of the point B are $|B|(\sqrt{3} / 2,1 / 2,0)$. Since we want the direction of the first rod with respect to the point B where the rods meet, we should take the displacement $(0,0,0)-B=-|B|(\sqrt{3} / 2,1 / 2,0)$ as the vector representing the direction of the first rod. The coordinates of point C are $|B|(\sqrt{3} / 2,1 / 2,0)+$ $|C|(0, \sqrt{2} / 2, \sqrt{2} / 2)$. Thus, we may take the (displacement) vector $|C|(0, \sqrt{2} / 2, \sqrt{2} / 2)$ to represent the direction of the second rod. The angle is determined by

$$
\cos \theta=\frac{-|B|(\sqrt{3} / 2,1 / 2,0) \cdot|C|(0, \sqrt{2} / 2, \sqrt{2} / 2)}{|B||C|}=-\frac{\sqrt{2}}{4}
$$

Therefore,

$$
\theta=\cos ^{-1}\left(-\frac{\sqrt{2}}{4}\right)
$$

This can also be written as

$$
\theta=\pi-\cos ^{-1}\left(\frac{\sqrt{2}}{4}\right)
$$

and it is about 111°.
\qquad
2. (20 points) (12.4.16)

Find the area of the triangle with vertices $(1,1,1),(2,1,3)$, and $(3,-1,1)$.

Solution: This is half the area of the parallelogram determined by the vectors

$$
(2,1,3)-(1,1,1)=(1,0,2) \quad \text { and } \quad(3,-1,1)-(1,1,1)=(2,-2,0)
$$

The area of the parallelogram is given by the norm of the cross product

$$
\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \times\left(\begin{array}{r}
2 \\
-2 \\
0
\end{array}\right)=2\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \times\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)=2\left(\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right) .
$$

Thus, the area of the triangle is

$$
\sqrt{4+4+1}=3
$$

\qquad
3. (20 points) (12.6.28) Sketch the quadric surface in \mathbb{R}^{3} associated with the relation

$$
y^{2}+z^{2}-x^{2}=1
$$

\qquad
4. (20 points) (13.2.14) Solve the initial value problem for the vector valued function \mathbf{r} :

$$
\left\{\begin{array}{l}
\mathbf{r}^{\prime}=\left(t^{3}+4 t, t, 2 t^{2}\right) \\
\mathbf{r}(0)=(1,1,0)
\end{array}\right.
$$

Solution:

$$
\mathbf{r}=(1,1,0)+\int_{0}^{t}\left(\tau^{3}+4 \tau, \tau, 2 \tau^{2}\right) d \tau=(1,1,0)+\left(\frac{1}{4} t^{4}+2 t^{2}, \frac{1}{2} t^{2}, \frac{2}{3} t^{3}\right) .
$$

This can also be written as

$$
\mathbf{r}=\left(1+\frac{1}{4} t^{4}+2 t^{2}, 1+\frac{1}{2} t^{2}, \frac{2}{3} t^{3}\right) .
$$

\qquad
5. (circular motion) A point mass moves along a circlular path parameterized with respect to time by

$$
\mathbf{r}(t)=a(\sin \theta,-\cos \theta)
$$

where $a>0$ is constant and $\theta=\theta(t)$.
(a) (10 points) Find the velocity and acceleration on the mass.
(b) (10 points) Let $\mathbf{u}_{1}=(\cos \theta, \sin \theta)$ and $\mathbf{u}_{2}=(-\sin \theta, \cos \theta)$. Express the acceleration as a linear combination of \mathbf{u} and \mathbf{v}

Solution:

(a)

$$
\begin{gathered}
\mathbf{v}=\mathbf{r}^{\prime}=a \theta^{\prime}(\cos \theta, \sin \theta)=a \theta^{\prime} \mathbf{u}_{1} \\
\mathbf{a}=\mathbf{r}^{\prime \prime}=a\left[\theta^{\prime \prime}(\cos \theta, \sin \theta)+\left(\theta^{\prime}\right)^{2}(-\sin \theta, \cos \theta)\right]
\end{gathered}
$$

(b)

$$
\mathbf{a}=a \theta^{\prime \prime} \mathbf{u}_{1}+a\left(\theta^{\prime}\right)^{2} \mathbf{u}_{2}
$$

