
Math 2552, Exam 2 (Practice) Name and section:

1. (4.3.5)

Consider the second order linear equation for a function y = y(x):

y′′ − 2y′ + 2y = 0.

(a) (5 points) Find an equivalent first order linear system.

(b) (5 points) Write the system in matrix form.

(c) (10 points) Find the general solution of the system.

Solution:

(a) y′ = z, z′ = −2y + 2z.

(b)
(

y
z

)

′

=

(

0 1
−2 2

) (

y
z

)

(c) The characteristic equation is λ2 − 2λ + 2 = 0 with roots 1 ± i. Taking the
eigenvalue 1 − i, and

A =

(

0 1
−2 2

)

,

we find

A − (1 − i)I =

(

−1 + i 1
−2 1 + i

)

.

It is easy to check that the second row is a (complex) multiple of the first, and
a corresponding complex eigenvector is

(

1
1 − i

)

=

(

1
1

)

+ i

(

0
−1

)

.

This tells me that the inverse of the change of basis matrix is

N−1 =

(

1 0
1 −1

)

and the solution is

x = etN−1

[

c1

(

cos t
sin t

)

+ c2

(

− sin t
cos t

)]

= et

[

c1

(

cos t
cos t − sin t

)

− c2

(

sin t
cos t + sin t

)]

.

Notice that I didn’t require in this question, nor include in the solution, a phase
plane diagram, but it would be worthwhile to make sure you could provide one.
Note also that in this case, the transformation corresponding to the change of basis
is orientation reversing, so the rotation is in the opposite direction from that of the
standard (canonical form) system.
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2. (20 points) (8.3.3)

Find the improved Euler approximation for y(0.2) with stepsize h = 0.1 if y solves
the IVP

{

y′ = 2y − 3t
y(0) = 1.

Solution:

1. First improved Euler step starting from (t0, Y0) = (0, 1):

(a) Euler approximation at t1 = t0 + h = 0.1 starting with Y0 = y0 = 1:

m0 = 2, y1 = 1 + 2/10 = 6/5.

(b) A second slope:

m1 = 2y1 + 3t1 = 2(6/5) − 3/10 = 21/10.

(c) The average of these two slopes:

m = (m0 + m1)/2 = (2 + 21/10)/2 = 41/20.

(d) (first) improved Euler step:

Y1 = Y0 + mh = 1 + 41/200 = 241/200.

2. Second improved Euler step starting from (t1, Y1) = (0.1, 241/200):

(a) Euler approximation at t2 = t1+h = 0.2 starting with y0 = Y1 = 241/200:

m0 = 2(241/200)− 3/10 = 211/100,

y1 = 241/200 + 211/1000 = 2832/2000 =
1416

103
= 1.416.

(b) A second slope:

m1 = 2y1 + 3(0.2) =
1416

(22)(53)
−

6

10
=

354

53
−

3

5
=

279

53
.

(c) The average of these two slopes:

m = (m0 + m1)/2 =
1

2

[

211

(22)(52)
+

279

53

]

=
1

2

[

1055 + 1116

(22)(53)
=

2171

103

]

.
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(d) (second) improved Euler step:

Y2 = Y1 + mh =
241

2(102)
+

2171

104

=
241

(23)(52)
+

2171

(24)(54)

=
12050 + 2171

(24)(54)

=
14221

(24)(54)
= 1.4221.

This is the (final) answer.
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3. (Section 7.2: simple pendulum with nonlinear cubic damping) A nonlinear damped
pendulum is modeled by

θ′′ = −2 sin θ − 2 tan−1 θ′.

(a) (5 points) Find an equivalent first order nonlinear system.

(b) (5 points) Find all equilibrium points of your system and the linearization at each
equilibrium point.

(c) (10 points) Draw the global phase diagram for your system.

Solution:

(a)
{

θ′ = z
z′ = −2 sin θ − 2 tan−1 z.

(b) All equilibrium points (θ∗, z∗)
T have z∗ = 0. Therefore, there is an infinite

sequence of equilibrium points (θ∗, z∗)
T = (πk, 0)T for k ∈ Z just as in the case

of the linearly damped (or undamped) simple pendulum. The derivative of the
vector field in this case is

DF =

(

0 1
−2 cos θ −2/(1 + z2)

)

.

Therefore, for even multiples θ∗ = 2πk, the linearized system is

x =

(

0 1
−2 −2

)

x (this represents a clockwise spiral sink).

For odd multiples θ∗ = (2k + 1)π, the linearized system is

x =

(

0 1
2 −2

)

x (this represents an unstable saddle as usual).
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4. (20 points) (7.4.9) Draw the phase diagram within the closed first quadrant Q = {(x, y) :
x ≥ 0, y ≥ 0} for this nonlinear autonomous system:

{

x′ = x(1 − y/2)
y′ = y(−1 + x/3).

Solution:

1. The equilibrium points are at (0, 0)T and (3, 2)T .

2. The derivative of the field is

DF =

(

1 − y/2 −x/2
y/3 −1 + x/3

)

.

3. At the origin, the linearization is

x′ =

(

1 0
0 −1

)

x (a saddle).

Observe also that the axes are both orbits. Restriction to the x-axis gives
x′ = x (expansion). Restriction to the y-axis gives y′ = −y (contraction).

4. The linearization at the other equilibrium point is

x′ =

(

0 −3/2
2/3 0

)

x (a periodic center).

5. Given the simplicity of the system, periodic orbits are expected.

Formal calculation:
dy

dx
=

y(−1 + x/3)

x(1 − y/2)
.

(

1

y
−

1

2

)

dy

dx
= −

1

x
+

1

3
.

From this, we guess that H(x, y) = ln y − y/2 + ln x− x/3 is conserved (along
orbits).

Confirmation:

d

dt
H(x, y) = (1/y−1/2)y′+(1/x−1/3)x′ = (1−y/2)(−1+x/3)+(1−x/3)(1−y/2) = 0.



Name and section:

6. The gradient of H satisfies ∇H = (1/x − 1/3, 1/y − 1/2), and the Hessian is

D2H =

(

−1/x2 0
0 −1/y2

)

.

From this, we see that H has a unique maximum at the first quadrant equilib-
rium point, and we have periodic orbits.
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5. (20 points) (4.5.8) Find the general solution of

y′′ − y′ − 2y = 2e−t.

Solution: We start by finding the general homogeneous solution using yh = eαt.
This leads to

yh = c1e
−t + c2e

2t.

A first guess for a particular solution is yp = ce−t, but this is in the kernel of the
operator, so we use yp = cte−t instead. Plugging this in, we find

c[−2 + t − 1 + t − 2t] = 2 or c = −2/3.

The general solution is

y = yh + yp = c1e
−t + c2e

2t −
2t

3
e−t.


