
Math 2552, Final Exam (practice) Name (10 points)

1. (a) (10 points) Solve the IVP
{

y′ − y2 − 1 = 0
y(3) = 2.

(b) (10 points) Find the general solution of the ODE y′′ = 1 + (y′)2.



Name and section:

Solution:

(a) Integrating y′/(y2 +1) = 1, we find tan−1 y− tan−1 2 = x−3 or tan−1 y = x+ c.
In this case,

y = tan
(

x − 3 + tan−1 2
)

.

(b) Setting v = y′ we have from part (a) that y′ = v = tan(x + c) where c is an
arbitrary constant. Integrating again, we get

y(t) = − ln[cos(x + c)] + d where c and d are arbitrary constants.



Name and section:

2. (4.5.18,19)

(a) (10 points) Find the general solution of the ODE 2y′ + y = 4.

(b) (10 points) Solve the IVP y′′ + 4y = t2 + 3et, y(0) = 0, y′(0) = 2.



Name and section:

Solution:

(a) This is a linear first order equation y′ + y/2 = 2:

(

et/2y
)′

= 2et/2.

Integrating, we get et/2y = 4et/2 + c, so the general solution is

y = 4 + ce−t/2 where c is an arbitrary constant.

(b) yh = a cos 2t + b sin 2t, and yp = At2 + Bt + C + Det gives

2A + Det + 4At2 + 4Bt + 4C + 4Det = t2 + 3et.

It follows that 2A + 4C = 0, 5D = 3, A = 1/4, and B = 0. Therefore,

y = a cos 2t + b sin 2t +
1

4
t2 − 1

8
+

3

5
et.

From the initial conditions 0 = y(0) = a − 1/8 + 3/5, so a = −19/40. Also,
2 = y′(0) = 2b + 3/5, so b = 7/10. The solution is

y = −19

40
cos 2t +

7

10
sin 2t +

1

4
t2 − 1

8
+

3

5
et.



Name and section:

3. (20 points) (5.6.2) Solve the IVP y′′ + 2y′ + 2y = h(t), y(0) = 5, y′(0) = 4 where h is a
solitary square wave as indicated below.



Name and section:

Solution: Notice that h(t) = H(t−π)−H(t−2π) = uπ(t)−u2π(t) where H(t−c) =
uc(t) is the Heaviside function which turns on at time t = c. Thus, the Laplace
transform of the IVP is

(s2 + 2s + 2)Y − 5s − 4 − 10 =
e−πs

s
− e−2πs

s
.

We have used rules number 36 and number 25 from the table. Solving for Y , we get

Y = 5
s

(s + 1)2 + 1
+

14

(s + 1)2 + 1
+

e−πs

s[(s + 1)2 + 1]
− e−πs

s[(s + 1)2 + 1]

= 5
s + 1

(s + 1)2 + 1
+

14 − 5

(s + 1)2 + 1
+

e−πs

s[(s + 1)2 + 1]
− e−πs

s[(s + 1)2 + 1]

= 5L[e−t cos t] + 9L[e−t sin t] +
e−πs

s[(s + 1)2 + 1]
− e−πs

s[(s + 1)2 + 1]
.

Using the method of partial fractions, we have

1

s(s2 + 2s + 2)
=

1

2

1

s
− 1

2

s + 2

(s + 1)2 + 1)

where as2 + 2as + 2a + bs2 + cs = 1 so that a + b = 0, 2a + c = 0, and 2a = 1 giving
a = 1/2 and bs + c = −(s + 2)/2.

Using rules number 7, number 8, and number 29 (or alternatively rules number 19
and number 20) on the table, we see

1

s(s2 + 2s + 2)
= L

[

1

2

(

1 − e−t cos t − e−t sin t
)

]

.

Finally, using rule number 27 to obtain the inverse, we have

y = 5e−t cos t + 9e−t sin t +
H(t − π)

2

(

1 − e−(t−π) cos(t − π) − e−(t−π) sin(t − π)
)

− H(t− 2π)

2

(

1 − e−(t−2π) cos(t − 2π) − e−(t−2π) sin(t − 2π)
)

= 5e−t cos t + 9e−t sin t +
H(t − π)

2

(

1 + eπ−t cos t + eπ−t sin t
)

− H(t− 2π)

2

(

1 − e2π−t cos t − e2π−t sin t
)

.



Name and section:

4. (a) (15 points) Use Laplace transforms to model the motion of an undamped oscillator
of unit mass and resonant frequency π in the following situation:

• The oscillator is initially in motion with velocity 2 while passing through the
equilibrium position (at time t = 0).

• The mass experiences an impulse of magnitude 2 in the positive/upward direc-
tion at time t = 3.

(b) (5 points) Find the limiting amplitude of the motion as t → ∞.



Name and section:

Solution:

(a) Let us model this system using the operator L[y] = y′′ + π2y. Given the initial
values of position and velocity, we can translate the inital state of the motion
into the Laplace transform space as

(s2 + π2)Y − 2.

The impulse on this motion is modeled in Laplace transform space by the alge-
braic problem

(s2 + π2)Y − 2 = 2e−3s

which has solution

Y =
2

s2 + π2
+

2e−3s

s2 + π2
.

Applying the inverse Laplace transform, we obtain a function y describing the
motion:

y =
2

π
(sin πt + H(t − 3) sinπ(t − 3)) .

Since sin π(t − 3) = − sin πt, this becomes

y =

{

2 sin πt/π, 0 ≤ t ≤ 3
0, t ≥ 3.

(b) From the second formula above, it is clear that

lim
tր∞

y(t) = y(3) = 0.



Name and section:

5. A pendulum is submerged in a damping fluid as indicated in the figure

and is modeled by the ODE

θ′′ + α tan−1 θ′ + k sin θ = 0 (1)

where θ is the displacement angle and α and k are positive constants.

(a) (10 points) Setting ω = θ′, obtain a system of two first order ODEs that is equiva-
lent to (1).

(b) (10 points) Find all equilibrium points for the system

(

θ∗
ω∗

)

=



Name and section:

Solution:

(a) The system is
{

θ′ = ω
ω′ = −k sin θ − α tan−1 ω.

(b)
(

θ∗
ω∗

)

=

(

jπ
0

)

for j = 0,±1,±2, . . ..



Name and section:

6. Consider the system you obtained in problem 5. A portion of the direction field for this
system in a case where α > 2

√
k is shown. Also, three numerically calculated orbits are

shown.
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(a) (10 points) Linearize the system at the equilibrium point corresponding to the
position with the pendulum hanging straight down (as shown on the left in the
previous problem). Assuming α > 2

√
k draw the phase portrait of the linearized

system.

(b) (10 points) Fill in more orbits on the direction field above to indicate clearly the
bahavior of the system in this case. Explain the significance of the separatrix labeled
(b).



Name and section:

Solution:

(a) The linearized system at the equilibrium (θ∗, ω∗) is

(

ξ
η

)′

=

(

0 1
−k cos θ −α/(1 + ω2)

) (

ξ
η

)

.

At (θ∗, ω∗) = (0, 0), this becomes

(

ξ
η

)′

=

(

0 1
−k −α

) (

ξ
η

)

.

The matrix has characteristic equation λ2+αλ+k = 0. The characteristic roots
are

λ =
−α ±

√
α2 − 4k

2
.

In the case under consideration, α > 2
√

k, there are two distinct negative eigen-
values λ1 < λ2 < 0. For the more negative eigenvalue, the corresponding
eigenvector (v1, v2)

T satisfies
v2 = λ1v1.

Similarly, for the less negative eigenvalue the eigenvector lies along a direction
with v2 = λ2v2. Since most orbits will be asymptotic to the weak decay direction,
the phase portrait for the linear system looks like this:
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(b) There are saddles at the odd multiples of π with the unstable separatrix limiting
to the adjacent stable equilibrium. The crucial observation here is that the
numerically calculated orbit in the second quadrant is clearly different from the
numerically calculated orbit/separatrix connecting (π, 0) to (0, 0) (and not only
different but also not symmetric to it with respect to the orgin, but they have
the same limiting tangent line at (0, 0). This means they must both be limiting
to the weak decay direction. In particular, the strong decay direction/separatrix
at (0, 0) may be drawn in with a more negative slope. Once this is accomplished,
the rest of the phase portrait is easy to fill in.

The stable separatrix (b) shown limiting to (π, 0) separates the orbits/initial
values which tend to the equilibrium at (θ∗, ω∗) = (0, 0) from those which tend



Name and section:

to an equilibrium having displacement a higher even multiple of π, for example
those limiting to (θ∗, ω∗) = (2π, 0).


