1. (25 points) (6C) Define *supremum*.

Give an example of a set of rational numbers which is bounded above but does not have a rational supremum.

Solution: The *supremum* of a nonempty set of real numbers A is an upper bound for A, that is, a number M such that $a \leq M$ for every $a \in A$, with the following property:

If B is any upper bound for A, then $B \geq M$.

Example:

$$A = \{q \in \mathbb{Q} : q^2 < 2\}$$

This set contains $1/2$ and is clearly bounded above by, for example, 2. But $\text{sup } A = \sqrt{2} \notin \mathbb{Q}$.

2. (25 points) (8G) Define the term *norm*.

Prove that $\|x\| = \max\{|x_1|, |x_2|, \ldots, |x_n|\}$ defines a norm on \mathbb{R}^n.

Solution: Given a vector space V, a *norm* is a real valued function on V with the following properties:

1. $\|v\| \geq 0$ with equality only if $v = 0$.
2. $\|v + w\| \leq \|v\| + \|w\|$.
3. $\|cv\| = |c|\|v\|$.

Clearly, the function on x defined above has domain the vector space \mathbb{R}^n and is real valued. The function is clearly nonnegative and positive definite since $\|x\| = 0$ implies each component is zero. In fact, $|x_j| = 0$ for each j and we know that absolute value is a norm on \mathbb{R}. Therefore $x_j = 0$ for each j as claimed. Thus, $x = 0$, and $\|\cdot\|$ is positive definite.

Next, we see that $\|x + y\| = \sum |x_j + y_j| \leq \sum |x_j| + |y_j| = \|x\| + \|y\|$ since absolute value satisfies the triangle inequality on \mathbb{R}.

Finally, $\|cx\| = \sum |cx_j| = |c| \sum |x_j|$. Again, this is because absolute value is a norm on \mathbb{R}.
3. (25 points) (9L) Define the terms *closed set* and *closure*.

Prove that the closure of a set is a closed set.

Solution: A set is *closed* if its complement is open.

The *closure* of a set A, denoted by \bar{A}, is the intersection of all closed sets containing A. In symbols:

$$\bar{A} = \bigcap_{B \supseteq A} B.$$

To see that the closure is closed, note that

$$\bar{A}^c = \bigcap_{B \supseteq A} B^c.$$

Since the sets B above are closed, the sets B^c are open. And since the union of open sets is open, we see that the complement of \bar{A} is open. This means \bar{A} is closed.

4. (25 points) (11A) Define the term *compact*.

Prove directly from the definitions (without using the Heine-Borel Theorem) that a closed subset of a compact set is compact.

Solution: A set K is compact if any open cover of K has a finite subcover.

Let K be a compact set and let C be a closed subset of K. Then notice that $U_0 = C^c$ is an open set. Let $\{U_\alpha\}_{\alpha \in \Gamma}$ be any open cover of C. Then $\{U_\alpha\} \cup \{U_0\}$ is an open cover of K. Since K is compact, this cover has a finite subcover:

$$\{U_0, U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_m}\}.$$

We claim that $\{U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_m}\}$ is a finite cover of C. In fact, if $x \in C$, then $x \in K \setminus U_0$. Therefore x must be in $\cup U_\alpha$. Therefore, $C \subseteq \cup U_\alpha$, and $\{U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_m}\}$ is a cover. It is therefore a finite open subcover of C, and C is compact.