Math 4441, Extra Problems: Differential Geometry (practice)

These questions were drafted for the final exam in 2015 but were omitted.

1. (regular surfaces/first fundamental form) Let $\mathcal{S}$ be a regular surface parameterized locally by $X$ with $X\left(u_{0}, v_{0}\right)=p \in \mathcal{S}$. Show there exists a local coordinate $\tilde{X}$ which parameterized $\mathcal{S}$ near $p$ with $\tilde{X}(0,0)=p$ and such that the coordinate tangent vectors $\tilde{X}_{u}(0,0)$ and $\tilde{X}_{v}(0,0)$ are orthogonal at $p$.

Solution: An affine change of coordinates of the form

$$
\tilde{X}(\xi, \eta)=X\left(u_{0}+\xi+c \eta, v_{0}+\eta\right)
$$

satisfies

$$
\tilde{X}_{\xi}(0,0)=X_{u}\left(u_{0}, v_{0}\right) \quad \text { and } \quad \tilde{X}_{\eta}(0,0)=c X_{u}\left(u_{0}, v_{0}\right)+X_{v}\left(u_{0}, v_{0}\right) .
$$

Thus,
$\tilde{E}(0,0)=E\left(u_{0}, v_{0}\right), \quad \tilde{F}(0,0)=c E\left(u_{0}, v_{0}\right)+F\left(u_{0}, v_{0}\right), \quad$ and $\quad \tilde{G}(0,0)=c^{2} E\left(u_{0}, v_{0}\right)+2 c F\left(u_{0}, v_{0}\right)+$
Therefore, by taking $c=-F\left(u_{0}, v_{0}\right) / E\left(u_{0}, v_{0}\right)$, we get $\tilde{F}(0,0)=0$, and

$$
\tilde{G}(0,0)=-F\left(u_{0}, v_{0}\right)^{2} / E\left(u_{0}, v_{0}\right)+G\left(u_{0}, v_{0}\right)=\frac{E\left(u_{0}, v_{0}\right) G\left(u_{0}, v_{0}\right)-F\left(u_{0}, v_{0}\right)^{2}}{E\left(u_{0}, v_{0}\right)} .
$$

The condition on $F$ is what we want, and the only thing we need to verify in order to know we have a valid reparameterization is that $\tilde{G}$ does not vanish. Since the value of $\tilde{G}\left(u_{0}, v_{0}\right)$ is positive, we can restrict to a smaller neighborhood if necessary to get an open set around $(0,0)$ where $\tilde{X}$ is a valid coordinate.
2. (curvature calculation) The catenoid is parameterized by $X(u, v)=(\cosh v \cos u, \cosh v \sin u, v)$.

The helicoid is parameterized on the same domain by $\tilde{X}(u, v)=(\sinh v \cos u, \sinh v \sin u, u)$. This problem concerns the deformation

$$
Y(u, v ; t)=\cos t X(u, v)+\sin t \tilde{X}(u, v) \quad \text { for } \quad 0 \leq t \leq \pi / 2
$$

Calculate the mean curvature of the regular surface parameterized by $Y(u, v)=Y(u, v ; t)$.

## Solution:

3. (25 points) (surfaces; area; 2-6.3) A sculpture in the shape of a Möbius strip has parameterization

$$
X(u, v)=(2 \cos (u)+v \cos (u / 2) \cos (u), 2 \sin (u)+v \cos (u / 2) \sin (u), v \sin (u / 2))
$$

Name and section: $\qquad$
where $u \in \mathbb{R},-1 \leq v \leq 1$, and the physical dimensions are given in yards. If paint covers $250 \mathrm{ft}^{2} /$ gal, how many quarts should be purchased to paint this sculpture?

(Hints: There are three feet in a yard and four quarts in a gallon.)

