Math 4441, Exam 1: Curves (practice) Name and section: \qquad

1. (25 points) (1-2.1) Find a clockwise parameterization of the circle $x^{2}+y^{2}=4$.

Solution: The standard (ccw) parameterization of a circle is

$$
\gamma_{c c}(\theta)=(r \cos \theta, r \sin \theta)
$$

Replace θ with $-\theta$ to get a clockwise parameterization:

$$
\gamma(\theta)=(r \cos \theta,-r \sin \theta)
$$

2. (25 points) (1-4.3) Determine the angle of intersection of the planes determined by $5 x+3 y+2 z-4=0$ and $3 x+4 y-7 z=0$.

Solution: The angle between the planes is the angle between their normals. The normals are $(5,3,2)$ and $(3,4,-7)$. The cosine of the angle between these vectors is their dot product divided by the product of their norms:

$$
\cos \theta=\frac{15+12-14}{\sqrt{25+9+4} \sqrt{9+16+49}}=\frac{13}{\sqrt{(38)(74)}}=\frac{13}{2 \sqrt{703}}
$$

Therefore,

$$
\theta=\cos ^{-1}\left(\frac{13}{2 \sqrt{703}}\right)
$$

3. (25 points) (1-5.1) Find the osculating plane of the helix parameterized by

$$
\alpha(s)=(3 \cos (s / 5), 3 \sin (s / 5), 4 s / 5) .
$$

Solution: Note that

$$
\alpha^{\prime}(s)=(-3 \sin (s / 5) / 5,3 \cos (s / 5) / 5,4 / 5) .
$$

Thus,

$$
\left|\alpha^{\prime}(s)\right|=1,
$$

and s is an arclength parameter. Therefore, the principal normal is given by

$$
\alpha^{\prime \prime}(s)=(-3 \cos (s / 5) / 25,-3 \sin (s / 5) / 25,0)
$$

\qquad

The osculating plane is spanned by the tangent vector and the principle normal to the curve, so a normal to the plane is given by

$$
N=\alpha^{\prime} \times(\cos (s / 5), \sin (s / 5), 0)=(4 \sin (s / 5) / 5,4 \cos (s / 5) / 5,-3 / 5)
$$

Thus, the osculating plane is $\left\{p \in \mathbb{R}^{3}:(p-\alpha(s)) \cdot N=0\right\}=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: 4(x-3 \cos (s / 5)) \sin (s / 5)+4(y-\sin (s / 5)) \cos (s / 5)-3(z-4 s / 5)=0\right\}$.
4. (25 points) (1-7.3) Compute the curvature of the ellipse with parameterization

$$
r(t)=(3 \cos t, 2 \sin t)
$$

Solution:

$$
r^{\prime}(t)=(-3 \sin t, 2 \cos t) \quad \text { and } \quad\left|r^{\prime}(t)\right|=\sqrt{9 \sin ^{2} t+4 \cos ^{2} t}=\sqrt{5 \sin ^{2} t+4}
$$

Therefore,

$$
\gamma(s)=r(\tau(s))
$$

is a parameterization by arclength where $\tau=\tau(s)$ is determined by

$$
s=\int_{0}^{\tau} \sqrt{5 \sin ^{2} t+4} d t
$$

This means that

$$
\dot{\tau}=\frac{1}{\sqrt{5 \sin ^{2} \tau+4}}
$$

and

$$
k(\tau)=|\ddot{\gamma}(s)| .
$$

Therefore,

$$
\dot{\gamma}(s)=r^{\prime}(\tau) \dot{\tau}=\frac{(-3 \sin \tau, 2 \cos \tau)}{\sqrt{5 \sin ^{2} \tau+4}}
$$

Thus,

$$
\ddot{\gamma}(s)=\frac{(-3 \cos \tau,-2 \sin \tau)}{5 \sin ^{2} \tau+4}-\frac{5 \sin \tau \cos \tau(-3 \sin \tau, 2 \cos \tau)}{\left(5 \sin ^{2} \tau+4\right)^{2}} .
$$

Name and section: \qquad

Finally,

$$
\begin{aligned}
k(\tau) & =|\ddot{\gamma}(s)| \\
& =\frac{\sqrt{5 \cos ^{2} \tau+4-2 \frac{25 \sin ^{2} \tau \cos ^{2} \tau}{5 \sin ^{2} \tau+4}+\frac{25 \sin ^{2} \tau \cos ^{2} \tau}{5 \sin ^{2} \tau+4}}}{5 \sin ^{2} \tau+4} \\
& =\frac{\sqrt{5 \cos ^{2} \tau+4-\frac{25 \sin ^{2} \tau \cos ^{2} \tau}{5 \sin ^{2} \tau+4}}}{5 \sin ^{2} \tau+4} \\
& =\frac{\sqrt{\left(5 \cos ^{2} \tau+4\right)\left(5 \sin ^{2} \tau+4\right)-25 \sin ^{2} \tau \cos ^{2} \tau}}{\left(5 \sin ^{2} \tau+4\right)^{3 / 2}} \\
& =\frac{6}{\left(5 \sin ^{2} \tau+4\right)^{3 / 2}} .
\end{aligned}
$$

