1. (25 points) (2-2.2) Is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: z=0\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ a regular surface?

Solution: This is not a regular surface because a neighborhood of a boundary point like $(1,0,0)$ is not homeomorphic to an open set of \mathbb{R}^{2} with the point corresponding to $(1,0,0)$ in the interior.

A justification of the assertion that the two sets in question above are not homemorphic goes roughly like this: Assume there is a homemorphism h with domain a neighborhood U of $(1,0,0)$ in

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: z=0 \text { and } x^{2}+y^{2} \leq 1\right\}
$$

and image a neighborhood of a point, say $(0,0) \in \mathbb{R}^{2}$ with $h(1,0,0)=(0,0)$. The image neighborhood $h(U)$ contains a circle $\Gamma=\partial B_{r}(0,0)$. The inverse image $C=$ $h^{-1}(\Gamma)$ of this circle is a simple closed curve in N. Also, by taking Γ small enough, which we can do, we may assume $C \subset B_{\rho}(1,0,0) \cap M$ for some $\rho>0$. Two things can then be seen pretty easily. First, there is a homotopy which shrinks C to a point within $N \backslash\{(1,0,0)\}$. That is, there is a continuous map $\phi:[0,1] \times C \rightarrow$ $N \backslash\{(1,0,0)\}$ with $\phi(0, t)$ a regular parameterization of C and $\phi(1, t)$ constant. Using the homeomorphism, we get a homotopy $\psi=h \circ \phi$ with image in $B_{r}(0,0) \backslash\{(0,0)\}$ which shrinks Γ to a point. Second, each image $\psi(s, C)$ has at least one point with a positive x coordinate and at least one point with a negative x coordinate. Since these points must be different, we get a contradiction for $s=1$.
2. (25 points) (2-3.3) Show that the paraboloid $z=x^{2}+y^{2}$ is diffeomorphic to a plane.

Solution: A global coordinate on the paraboloid P is given by $X(u, v)=\left(u, v, u^{2}+\right.$ v^{2}), and the plane \mathbb{R}^{2} has a trivial global coordinate $Y(x, y)=(x, y)$.
Consider the function $\phi: P \rightarrow \mathbb{R}^{2}$ by $\phi\left(p_{1}, p_{2}, p_{3}\right)=\left(p_{1}, p_{2}\right)$. First note that the composition $\phi \circ X(u, v)=(u, v)$ is the identity map. So it's clear that this function is smooth. On the other hand, given a point (x, y) in the plane, there is exactly one point $p=\left(p_{1}, p_{2}, p_{3}\right) \in P$ with $\phi(p)=(x, y)$, namely, $\left(x, y, x^{2}+y^{2}\right)$. Thus, ϕ has in inverse. Also, $X^{-1} \circ \phi^{-1}(x, y)=(x, y)$. This is also the identity map and is smooth. Thus, ϕ is a diffeomorphism.
3. (25 points) (2-4.2) Determine the tangent planes of $x^{2}+y^{2}-z^{2}=1$ at the points $(x, y, 0)$.
\qquad

Solution: Since $z^{2}=x^{2}+y^{2}-1$, we see that this surface is parameterized (in polar/cylindrical) coordinates by

$$
X(\theta, z)=\left(\sqrt{1+z^{2}} \cos \theta, \sqrt{1+z^{2}} \sin \theta, z\right)
$$

on $[0,2 \pi] \times \mathbb{R}$. Note that the points in question corresponding to $z=0$ lie on the unit circle in the x, y-plane. The tangent vectors here are

$$
X_{\theta}=(-\sin \theta, \cos \theta, 0) \quad \text { and } \quad X_{z}=(0,0,1)
$$

Thus, the plane at $(x, y, 0)=(\cos \theta, \sin \theta, 0)$ is

$$
\{(\xi, \eta, \zeta):(\xi-x, \eta-y, \zeta) \cdot(\cos \theta, \sin \theta, 0)=0\}=\{(\xi, \eta, \zeta): \xi \cos \theta+\eta \sin \theta=1\}
$$

4. (25 points) (2-5.1) Compute the first fundamental form of the ellipsoid parameterized by

$$
X(u, v)=(3 \sin u \cos v, 4 \sin u \sin v, 5 \cos u)
$$

Solution:

$$
X_{u}=(3 \cos u \cos v, 4 \cos u \sin v,-5 \sin u)
$$

and

$$
X_{v}=(-3 \sin u \sin v, 4 \sin u \cos v, 0)
$$

Thus, the coefficients of the first fundamental form are given by

$$
\begin{gathered}
E=\left|X_{u}\right|^{2}=\cos ^{2} u\left(9 \cos ^{2} v+16 \sin ^{2} v\right)+25 \sin ^{2} u \\
F=X_{u} \cdot X_{v}=7 \cos u \cos v \sin u \sin v
\end{gathered}
$$

and

$$
G=\left|X_{v}\right|^{2}=\sin ^{2} u\left(9 \sin ^{2} v+16 \cos ^{2} v\right)
$$

The first fundmental form of a tangent vector $a X_{u}+b X_{v}$ at $X(u, v)$ is therefore

$$
\begin{aligned}
\mathrm{I}\left(a X_{u}+b X_{v}\right)= & E a^{2}+2 F a b+G b^{2} \\
= & {\left[\cos ^{2} u\left(9 \cos ^{2} v+16 \sin ^{2} v\right)+25 \sin ^{2} u\right] a^{2} } \\
& \quad+2[7 \cos u \cos v \sin u \sin v] a b \\
& \quad+\sin ^{2} u\left(9 \sin ^{2} v+16 \cos ^{2} v\right) b^{2} .
\end{aligned}
$$

