
Math 4441, Exam 3: Gauss Map (practice) Name/Section:

1. (25 points) (3-2.8) Determine the region of the unit sphere covered by the Gauss map
of the paraboloid z = x2 + y2.

Solution: A parameterization is given by X(u, v) = (u, v, u2 + v2).

Xu = (1, 0, 2u) and Xv = (0, 1, 2v).
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This is the upward normal (Gauss map). It covers the open upper half sphere. To
see this, first note that the third component of

N = (−2u,−2v, 1)/
√

1 + 4u2 + 4v2 (1)

is positive. This means all images are in S2
+ = {(x, y, z) : x2 + y2 + z2 = 1, z > 0}.

On the other hand, given any (x, y, z) ∈ S2
+, we can take u = −x/(2

√

1 − x2 − y2)

and v = −y/(2
√

1 − x2 − y2), we will get N(u, v) = (x, y, z). (Just plug these values

into (1) and use the fact that z =
√

1 − x2 − y2.)

2. (25 points) (3-2.15) Given that two surfaces intersect along a regular curve at a constant
angle and that the curve is a curvature line on one of the surfaces, prove that the
intersection curve is a curvature line on the other surface.

Solution: We can parameterize the preimage of the curve in the coordinates (at least
locally), so that u = uj(t), v = vj(t) and the curve is given by γ(t) = Xj(u(t), v(t))
for j = 1, 2. The condition that the curves meet at a constant angle is

N1 · N2 = constant

along the curve (at corresponding points). The condition that curve be a curvature
line along one of the surfaces is

dN(γ′) =
d

dt
Nj = λγ′

for some (function) λ.

Now, say you have a curvature line on one surface, and the surfaces meet at a constant
angle. If that angle is 0 or π so that N1 · N2 = ±1, then N2 = ±N1, and

N ′

2 = ±N ′

1 = ±λγ′,



Name and section:

and we are done. This means we can assume N1 · N2 6= ±1, and {γ′, N1, N2} forms
a basis for R3.

Differentiating the angle condition we get

N ′

1 · N2 + N1 · N ′

2 = 0. (2)

If the curvature line is on the first surface, then N ′

1 is tangent to the intersection
curve, and lies in the tangent plane of the second surface in particular. Thus, the
first term in (2) vanishes and we get

N1 · N ′

2 = 0.

This means N ′

2 is orthogonal to N1. Differentiating the norm condition N2 ·N2 = 1,
we find that N ′

2 is also orthogonal to N2. This means N ′

2 is orthogonal to the
two-dimensional subspace spanned by N1 and N2, and has no component in that
subspace. In other words, N ′

2 is a multiple of γ′. Thus, N ′

2 = µγ′ for some function
µ, and γ is a curvature line on the second surface.

For the reverse direction, we assume that γ is a curvature line on both surfaces.
Thus, N ′

1 = λγ′ and N ′

2 = µγ′. Differentiating N1 · N2, we find

N ′

1 · N2 + N1 · N ′

2 = λγ′ · N2 + N1 · (µγ′) = 0

since γ′ is tangent to the surfaces and Nj is normal for j = 1, 2.

3. (25 points) (3-3.1) Compute the Gauss curvature and mean curvature of the hyperboloid
z = xy.

Solution: As usual we use the graph parameterization X(u, v) = (u, v, uv).

Xu = (1, 0, v) and Xv = (0, 1, u).

E = 1 + v2, F = uv, G = 1 + u2.

EG − F 2 = 1 + u2 + v2,

and
N = (−v,−u, 1)/

√
1 + u2 + v2.

Xuu = 0, Xuv = e3, Xvv = 0.

Thus, the coefficients of the second fundamental form are

e = Xuu · N = 0, f = Xuv · N = 1/
√

1 + u2 + v2, and g = Xvv · N = 0.



Name and section:

Thus, the Gauss curvature is

K =
eg − f 2

EG − F 2
=

−1/(1 + u2 + v2)

1 + u2 + v2
=

−1

(1 + u2 + v2)2
,

and the mean curvature (with respect to the upward normal) is

H =
1

2

eG − 2fF + Eg

EG − F 2
=

−2uv/
√

1 + u2 + v2

2(1 + u2 + v2)
=

−uv

(1 + u2 + v2)3/2
.

4. (25 points) (3-3.15) Give an example of a surface which has an isolated parabolic point.

Solution: The basic idea is that one point should look like a cylinder (to second
order), that is it should have one zero curvature direction and one nonzero direction
orthogonal to it. We know the graph of x4 has an isolated point of zero curvature,
so we can use this in one direction. Then we need something to “bend it up” in the
other direction away from the origin. We can do this with a graph which looks like
x4 in one direction (only at the origin) and y2 in the other:

X(u, v) = (u, v, u4 + u2v2 + v2).

This has a parabolic point at the origin, and the other points are all elliptic. To see
this, compute the second fundamental form:

Xu = (1, 0, 4u3 + 2uv2), Xv = (0, 1, 2u2v + 2v),

and

N = (−4u3 − 2uv2,−2u2v − 2v, 1)/
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2.

Xuu = (0, 0, 12u2 + 2v2), Xuv = (0, 0, 4uv), Xvv = (0, 0, 2u2 + 2).

e = (12u2 + 2v2)/
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2,

f = 4uv/
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2,

g = (2u2 + 2)/
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2.



Name and section:

Given a tangent direction aXu + bXv, we know that

II(aXu + bXv) = ea2 + 2fab + gb2 = ea2 + gb2

=
(12u2 + 2v2)a2 − 8uvab + (2u2 + 2)b2

√
1 + 16u6 + 24u4v2 + 12u2v2 + 4v2

=
(6u2 + v2)a2 − 4uvab + (u2 + 1)b2

2
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2

=
6u2a2 + v2a2 − 4uvab + (u2 + 1)b2

2
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2

=
6u2a2 + (va − 2ub)2 + (−3u2 + 1)b2

2
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2
.

Notice that the numerator in the expression above is strictly positive whenever |u| <
1/3 unless b = 0. This means there is at most one possible direction at each point
near the origin with zero sectional curvature. Taking this direction and assuming it
is nondegenerate, we have a 6= 0. Finally, for a zero curvature in this direction, we
must have

6u2a2 + v2a2

2
√

1 + 16u6 + 24u4v2 + 12u2v2 + 4v2
= 0.

This can only happen when u = v = 0, i.e., at the origin.


