Math 4441, Exam 4: Intrinsic Geometry (practice)Name/Section:

1. (25 points) (4-2.4) Define stereographic projection and show that stereographic projection is a conformal map.

Solution: Stereographic projection $\pi: \mathbb{S}^{2} \backslash\{(0,0,1)\} \rightarrow \mathbb{R}^{2}$ is given by

$$
\pi(x, y, z)=(x, y) /(1-z)
$$

To see that this map is conformal, we recall that inverse stereographic projection provides coordinates on $\mathbb{S}_{*}^{2}=\mathbb{S}^{2} \backslash\{(0,0,1)\}$ given by

$$
X(u, v)=\left(2 u, 2 v, u^{2}+v^{2}-1\right) /\left(u^{2}+v^{2}+1\right)
$$

where $X: \mathbb{R}^{2} \rightarrow \mathbb{S}_{*}^{2}$. Calculating the first fundamental form in these coordinates, we find

$$
X_{u}=2\left(-u^{2}+v^{2}+1,-2 u v, 2 u\right) /\left(u^{2}+v^{2}+1\right)^{2}
$$

and

$$
\begin{gathered}
X_{v}=2\left(-2 u v, u^{2}-v^{2}+1,2 v\right) /\left(u^{2}+v^{2}+1\right)^{2} \\
E=\frac{4}{\left(u^{2}+v^{2}+1\right)^{2}}, \quad F=0, \quad G=\frac{4}{\left(u^{2}+v^{2}+1\right)^{2}} .
\end{gathered}
$$

Thus,

$$
I\left(a X_{u}+b X_{v}\right)=E\left(a^{2}+b^{2}\right)
$$

Notice that this says
Given a vector $(a, b) \in T_{(u, v)} \mathbb{R}^{2}$,

$$
|(a, b)|^{2}=|d X((a, b))|^{2} / E
$$

(The norm on the left is in \mathbb{R}^{2}; the norm on the right is in \mathbb{R}^{3}.)
Using the polarization identities

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{p}=(1 / 2)\left[\langle\mathbf{v}+\mathbf{w}, \mathbf{v}+\mathbf{w}\rangle_{p}-\langle\mathbf{v}, \mathbf{v}\rangle_{p}-\langle\mathbf{w}, \mathbf{w}\rangle_{p}\right]
$$

where $\mathbf{v}, \mathbf{w} \in T_{p} \mathscr{S}_{*}^{2}$ and

$$
\langle\mathbf{v}, \mathbf{w}\rangle=(1 / 2)[\langle\mathbf{v}+\mathbf{w}, \mathbf{v}+\mathbf{w}\rangle-\langle\mathbf{v}, \mathbf{v}\rangle-\langle\mathbf{w}, \mathbf{w}\rangle]
$$

for $\mathbf{v}, \mathbf{w} \in T_{(u, v)} \mathbb{R}^{2}$, we see that for $p=X(u, v)$

$$
\begin{aligned}
\langle\mathbf{v}, \mathbf{w}\rangle & =(1 /(2 E))\left[|d X(\mathbf{v}+\mathbf{w})|^{2}-|d X(\mathbf{v})|^{2}-|d X(\mathbf{w})|^{2}\right] \\
& =\langle d X(\mathbf{v}), d X(\mathbf{w})\rangle_{p} / E
\end{aligned}
$$

Since $d X^{-1}=d \pi: T_{p} \mathbb{S}_{*}^{2} \rightarrow T_{\pi(p)} \mathbb{R}^{2}$, this means

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{p}=E\left\langle d \pi_{p}(\mathbf{v}), d \pi_{p}(\mathbf{w})\right\rangle
$$

for $\mathbf{v}, \mathbf{w} \in T_{p} \mathbb{S}_{*}^{2}$. This is the definition of conformality.
\qquad
2. (25 points) (4-2.12) Let $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\}$ be a cylinder. Find an isometry $\phi: C \rightarrow C$ such that the set of fixed points, i.e., $\{p \in C: \phi(p)=p\}$, contains exactly two points.

Solution: Rotation of the cylinder about the x-axis by an angle of 180° should accomplish what we need:

$$
\phi(x, y, z)=(x,-y,-z) .
$$

Clearly, this map is one-to-one, onto, continuous, and has a continuous inverse. In fact, it is clear that the map is smooth as well as its inverse. Thus, ϕ is a diffeomorphism. Moreover, if $X=\left(X_{1}, X_{2}, X_{3}\right)$ is any parameterization, then comparing the parameterizations X and $\tilde{X}=\phi \circ X=\left(X_{1},-X_{2},-X_{3}\right)$, we see that

$$
\tilde{E}=E, \quad \tilde{F}=F, \quad \text { and } \quad \tilde{G}=G .
$$

Thus, given $\mathbf{v}, \mathbf{w} \in T_{p} C$, we can take $\mathbf{v}_{0}=d X^{-1}(\mathbf{v})$ and $\mathbf{w}_{0}=d X^{-1}(\mathbf{w})$. Then,

$$
\begin{aligned}
\langle\mathbf{v}, \mathbf{w}\rangle_{p} & =\left\langle d X\left(\mathbf{v}_{0}\right), d X\left(\mathbf{w}_{0}\right)\right\rangle_{p} \\
& =\left\langle d \tilde{X}\left(\mathbf{v}_{0}\right), d \tilde{X}\left(\mathbf{w}_{0}\right)\right\rangle_{\phi(p)} .
\end{aligned}
$$

This is true because the first fundamental forms of X and \tilde{X} are the same. Finally, since $d \tilde{X}=d \phi \circ d X$, we see that

$$
\langle\mathbf{v}, \mathbf{w}\rangle_{p}=\langle d \phi(\mathbf{v}), d \phi(\mathbf{w})\rangle_{\phi(p)} .
$$

This means that ϕ is an isometry.
We need to check the fixed points: If $(x,-y,-z)=(x, y, z) \in C$, then clearly $y=z=0$. Since also $x^{2}+y^{2}=1$, we conclude that $x= \pm 1$, and there are exactly two such points $(\pm 1,0,0)$.
3. (25 points) (4-3.3) Let

$$
X(u, v)=(u \cos v, u \sin v, \ln u)
$$

and

$$
\tilde{X}=(u \cos v, u \sin v, v) .
$$

Show that $\tilde{X} \circ X^{-1}$ is not an isometry.

Solution: If these parameterized surfaces were isometric, then they would have the same first fundamental form at corresponding points. In fact,

$$
X_{u}=(\cos v, \sin v, 1 / u), \quad X_{v}=(-u \sin v, u \cos v, 0)
$$

\qquad
so that

$$
E=1+1 / u^{2}, \quad F=0, \quad G=u^{2},
$$

while

$$
\tilde{X}_{u}=(\cos v, \sin v, 0), \quad \tilde{X}_{v}=(-u \sin v, u \cos v, 1),
$$

and

$$
\tilde{E}=1, \quad \tilde{F}=0, \quad \tilde{G}=u^{2}+1
$$

Thus, the first fundamental forms are not the same, and the surfaces can not be isometric.
4. (25 points) (4-3.4) Show that no neighborhood of a sphere may be isometrically mapped into a portion of the plane.

Solution: Were such an isometry to exist, the sphere and the plane would have the same Gauss curvature at corresponding points. However, the Gauss curvature of a sphere is a nonzero constant, and the Gauss curvature of a plane is constant zero. Consequently, there can be no such isometry.

