
Math 4441, Exam 4: Intrinsic Geometry (practice)Name/Section:

1. (25 points) (4-2.4) Define stereographic projection and show that stereographic projec-
tion is a conformal map.

Solution: Stereographic projection π : S2\{(0, 0, 1)} → R2 is given by

π(x, y, z) = (x, y)/(1 − z).

To see that this map is conformal, we recall that inverse stereographic projection
provides coordinates on S2

∗
= S2\{(0, 0, 1)} given by

X(u, v) = (2u, 2v, u2 + v2 − 1)/(u2 + v2 + 1)

where X : R2 → S2
∗
. Calculating the first fundamental form in these coordinates, we

find
Xu = 2(−u2 + v2 + 1,−2uv, 2u)/(u2 + v2 + 1)2

and
Xv = 2(−2uv, u2 − v2 + 1, 2v)/(u2 + v2 + 1)2.

E =
4

(u2 + v2 + 1)2
, F = 0, G =

4

(u2 + v2 + 1)2
.

Thus,
I(aXu + bXv) = E(a2 + b2).

Notice that this says

Given a vector (a, b) ∈ T(u,v)R2,

|(a, b)|2 = |dX((a, b))|2/E.

(The norm on the left is in R2; the norm on the right is in R3.)

Using the polarization identities

〈v,w〉p = (1/2)[〈v + w,v + w〉p − 〈v,v〉p − 〈w,w〉p]

where v,w ∈ TpS2
∗

and

〈v,w〉 = (1/2)[〈v + w,v + w〉 − 〈v,v〉 − 〈w,w〉]

for v,w ∈ T(u,v)R2, we see that for p = X(u, v)

〈v,w〉 = (1/(2E))[|dX(v + w)|2 − |dX(v)|2 − |dX(w)|2]

= 〈dX(v), dX(w)〉p/E.

Since dX−1 = dπ : TpS2
∗
→ Tπ(p)R2, this means

〈v,w〉p = E〈dπp(v), dπp(w)〉

for v,w ∈ TpS2
∗
. This is the definition of conformality.
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2. (25 points) (4-2.12) Let C = {(x, y, z) ∈ R3 : x2 + y2 = 1} be a cylinder. Find an
isometry φ : C → C such that the set of fixed points, i.e., {p ∈ C : φ(p) = p}, contains
exactly two points.

Solution: Rotation of the cylinder about the x-axis by an angle of 180◦ should
accomplish what we need:

φ(x, y, z) = (x,−y,−z).

Clearly, this map is one-to-one, onto, continuous, and has a continuous inverse. In
fact, it is clear that the map is smooth as well as its inverse. Thus, φ is a diffeomor-
phism. Moreover, if X = (X1, X2, X3) is any parameterization, then comparing the
parameterizations X and X̃ = φ ◦ X = (X1,−X2,−X3), we see that

Ẽ = E, F̃ = F, and G̃ = G.

Thus, given v,w ∈ TpC, we can take v0 = dX−1(v) and w0 = dX−1(w). Then,

〈v,w〉p = 〈dX(v0), dX(w0)〉p

= 〈dX̃(v0), dX̃(w0)〉φ(p).

This is true because the first fundamental forms of X and X̃ are the same. Finally,
since dX̃ = dφ ◦ dX, we see that

〈v,w〉p = 〈dφ(v), dφ(w)〉φ(p).

This means that φ is an isometry.

We need to check the fixed points: If (x,−y,−z) = (x, y, z) ∈ C, then clearly
y = z = 0. Since also x2 + y2 = 1, we conclude that x = ±1, and there are exactly
two such points (±1, 0, 0).

3. (25 points) (4-3.3) Let
X(u, v) = (u cos v, u sin v, lnu)

and
X̃ = (u cos v, u sin v, v).

Show that X̃ ◦ X−1 is not an isometry.

Solution: If these parameterized surfaces were isometric, then they would have the
same first fundamental form at corresponding points. In fact,

Xu = (cos v, sin v, 1/u), Xv = (−u sin v, u cos v, 0),
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so that
E = 1 + 1/u2, F = 0, G = u2,

while
X̃u = (cos v, sin v, 0), X̃v = (−u sin v, u cos v, 1),

and
Ẽ = 1, F̃ = 0, G̃ = u2 + 1.

Thus, the first fundamental forms are not the same, and the surfaces can not be
isometric.

4. (25 points) (4-3.4) Show that no neighborhood of a sphere may be isometrically mapped
into a portion of the plane.

Solution: Were such an isometry to exist, the sphere and the plane would have the
same Gauss curvature at corresponding points. However, the Gauss curvature of a
sphere is a nonzero constant, and the Gauss curvature of a plane is constant zero.
Consequently, there can be no such isometry.


