Math 4441, Final Exam: Differential Geometry (\$wandidection: \qquad

1. (25 points) (1-5.12) Let $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ be a regular parameterized curve. Show that the curvature at $\gamma=\gamma(t)$ is

$$
k=k(t)=\frac{\left|\gamma^{\prime} \times \gamma^{\prime \prime}\right|}{\left|\gamma^{\prime}\right|^{2}} .
$$

Solution:

2. (25 points) (1-5.11; alternative for first problem) A planar curve is parameterized by

$$
\gamma(\theta)=(r(\theta) \cos \theta, r(\theta) \sin \theta)
$$

Find an expression for the curvature of γ in terms of the given function r. (Simplify your answer completely.)
Alternative: If the curvature of γ is written as

$$
k(\theta)=\frac{a r^{\prime 2}+b r r^{\prime \prime}+r^{2}}{\left(r^{2}+r^{\prime 2}\right)^{3 / 2}}
$$

where a and b are constants, find the values of a and b.

Solution:

3. (25 points) (1-5.4) If all (principal) normals of a parameterized planar curve pass through a given point, show that the curve is contained in a circle.

Solution:

4. (25 points) (2-5.10) Compute the first fundamental form of polar coordinates on the plane.

Solution:

5. (25 points) (2-2.1-3, 2-3.1-3, 3-3.15) Find a surface with constant mean curvature 3 which is diffeomorphic to

$$
\mathcal{S}=\left\{(x, y, 0): 1<x^{2}+y^{2}<9\right\} .
$$

\qquad

Solution: Let $\tilde{\mathcal{S}}$ be the portion of the sphere parameterized by

$$
X(u, v)=\left(u, v, \sqrt{1 / 9-u^{2}-v^{2}}\right)
$$

for $1 / 36<u^{2}+v^{2}<1 / 9$. Alternatively, this may be expressed as

$$
\tilde{\mathcal{S}}=\left\{\left(u, v, \sqrt{1 / 9-u^{2}-v^{2}}\right): 1 / 36<u^{2}+v^{2}<1 / 9\right\}
$$

A diffeomorphism $\phi: \mathcal{S} \rightarrow \tilde{\mathcal{S}}$ is given by

$$
\phi(x, y, 0)=\left(\frac{\sqrt{x^{2}+y^{2}+2}}{6} x, \frac{\sqrt{x^{2}+y^{2}+2}}{6} y, \ldots\right)
$$

6. (25 points) (3-3.20) Find the umbilical points of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Solution:

