Math 4441, Final Exam: Diff. Geom. (practice) Name/Section:

1. (25 points) (1-5.14) Let $\gamma:(0,1) \rightarrow \mathbb{R}^{3}$ be a regular parameterized curve. If $|\gamma(t)| \leq 3$ for $0<t<1$, and $|\gamma(1 / 2)|=3$, show that the curvature $k=k(1 / 2)$ at $\gamma(1 / 2)$ satisfies

$$
k \geq \frac{1}{3} .
$$

Solution: Reparemeterize the curve by arclength, let the reparameterization be denoted by α, and assume that $\alpha(0)=\gamma(1 / 2)$. Since $|\alpha(s)|^{2}$ has a local max at $s=0$, we have

$$
\frac{d}{d s}|\alpha(s)|_{s=0}^{2}=0 \quad \text { and } \quad \frac{d^{2}}{d s^{2}}|\alpha(s)|_{s=0}^{2} \leq 0
$$

These conditions imply

$$
\dot{\alpha}(0) \cdot \alpha(0)=0 \quad \text { and } \quad|\dot{\alpha}(0)|^{2}+\ddot{\alpha}(0) \cdot \alpha(0) \leq 0 .
$$

Since $\dot{\alpha}$ is a unit vector, the second inequality becomes

$$
\ddot{\alpha}(0) \cdot \alpha(0) \leq-1 .
$$

This means

$$
|\ddot{\alpha}(0) \cdot \alpha(0)| \geq 1 .
$$

Since $k=|\ddot{\alpha}(0)|$ and $|\alpha(0)|=3$, the Cauchy-Schwarz inequality implies

$$
3 k=|\alpha(0)||\ddot{\alpha}(0)| \geq|\ddot{\alpha}(0) \cdot \alpha(0)| \geq 1
$$

Dividing by 3 now gives the result.
2. (25 points) (3-3.2) A line passing through $(0,0, a) \in \mathbb{R}^{3}$ is parameterized by

$$
\gamma(t)=(0,0, a)+t(\cos a, \sin a, 0) .
$$

Find a parameterization for the surface which is the union of all such lines.

Solution:

$$
X(u, v)=(u \cos v, u \sin v, v)
$$

3. (25 points) (3-2.8, Proposition 2, page 167) Let

$$
\mathcal{S}_{r}=\left\{\left(x, y, x^{2}+y^{2}\right): x^{2}+y^{2}<r^{2}\right\} .
$$

1. Find an expression for the area of the image of the Gauss map of \mathcal{S}_{r}.
\qquad
2. Find an expression for the area of \mathcal{S}_{r}.
3. Denote the area of \mathcal{S}_{r} by $A(r)$ and the area of the Gauss image by $\mathcal{G}(r)$. Compute

$$
\lim _{r \rightarrow 0} \frac{\mathcal{G}(r)}{A(r)}
$$

Solution:

$$
A(r)=2 \pi \int_{0}^{r} \sqrt{1+4 t^{2}} t d t=\frac{\pi}{6}\left[\left(1+4 r^{2}\right)^{3 / 2}-1\right]
$$

$\mathcal{G}(r)$ is the area of a spherical cap on the unit sphere above the ball of radius $2 r / \sqrt{1+4 r^{2}}$. That is,

$$
\mathcal{G}(r)=2 \pi \int_{0}^{\frac{2 r}{\sqrt{1+4 r^{2}}}} \sqrt{1+\frac{t^{2}}{1-t^{2}}} t d t=2 \pi\left[1-\frac{1}{\sqrt{1+4 r^{2}}}\right] .
$$

Thus,

$$
\frac{\mathcal{G}(r)}{A(r)}=12 \frac{1-\left(1+4 r^{2}\right)^{-1 / 2}}{\left(1+4 r^{2}\right)^{3 / 2}-1}
$$

One application of L'Hopital's rule gives that the desired limit of this expression is 4, which is the Gauss curvature of the paraboloid at the origin.
4. (25 points) $(4-2.4,12)$ Find an isometry from

$$
B_{1}=\left\{(x, y, 0): x^{2}+y^{2}<1\right\}
$$

to a surface \mathcal{S} of constant mean curvature $\pi / 2$. Specify clearly the surface \mathcal{S} and the isometry.

Solution: Since B_{1} is flat, \mathcal{S} must have Gauss curvature $K \equiv 0$. A cylinder is an obvious choice. In order to get $H=\pi / 2$, we take

$$
\mathcal{S}=\left\{(x, y, z): x^{2}+y^{2}=1 / \pi^{2}\right\}
$$

Let $\phi: B_{1} \rightarrow \mathcal{S}$ by

$$
\phi(x, y, 0)=\left(\frac{\cos (\pi x)}{\pi}, \frac{\sin (\pi x)}{\pi}, y\right) .
$$

(ϕ wraps the disk around the cylinder.) Observe that ϕ is one-to-one since the curcumference of \mathcal{S} is the same as the diamter of B_{1}. Also, we have

$$
\phi_{x}=(-\sin (\pi x), \cos (\pi x), 0) \quad \text { and } \quad \phi_{y}=(0,0,1) .
$$

Name and section: \qquad

Thus, $\left|\phi_{x}\right|=1, \phi_{x} \cdot \phi_{y}=0$, and $\left|\phi_{y}\right|=1$. Given $v=(a, b) \in T_{p} B_{1}$ and $w=(c, d) \in$ $T_{p}\left(B_{1}\right)$, we have

$$
d \phi(v)=\phi_{x} a+\phi_{y} b \quad \text { and } \quad d \phi(w)=\phi_{x} c+\phi_{y} d
$$

Thus,

$$
\begin{aligned}
\langle d \phi(v), d \phi(w)\rangle & =\left\langle\phi_{x} a+\phi_{y} b, \phi_{x} c+\phi_{y} d\right\rangle \\
& =a c+b d \\
& =\langle v, w\rangle .
\end{aligned}
$$

Thus, ϕ is an isometry.

