Chapter 13

Spaces and spaces of functions

When we speak of a “space,” we usually mean a set with some kind of
“structure” which can be assumed among and between the elements of the
set. We have mentioned such structures above and we will mention more be-
low. Some structures are fundamentally algebraic, like structures associated
with addition and multiplication or scaling. These give rise to, for exam-
ple, vector spaces. Some structures are also algebraic and more elementary.
In this category are algebraic groups which will be discussed below. Other
structures are fundamentally “analytic” like those associated with a norm
or an inner product, and possibly even a distance function giving rise to
normed spaces, inner product spaces, and distance (a.k.a. metric) spaces, all
of which will also be discussed below. Some structures do not fundamentally
concern individual elements in the set but rather subsets and collections of
subsets. Two examples of these kinds of “spaces” are measure spaces and
topological spaces. We begin our discussion with a brief introduction to the
latter. Many of the spaces we discuss are isolated according to properties
relatively familiar from the consideration of R™ and the calculus outlined in
the previous chapter.

13.1 Topological spaces

A topological space is a set X with a specified collection ¥ of subsets of
X called the topology on X or the collection of open sets. A topology
is a collection of open sets. More generally, the collection of all subsets of a
given set X is called the power set of X and is denoted §2(X) or 2. Thus,
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150 CHAPTER 13. SPACES AND SPACES OF FUNCTIONS

a topology T is a subset of §2(X). Specifically, a collection T qualifies as a
collection of open sets if the following hold:

(i) ¢, X € F.

(ii) If Uy, Uy, ..., Uy € T for some k € N, then

k
(UjeT
j=1

We say a topology ¥ is closed under finite intersections.

(iii) If U, € T for a in some indexing set I, then
UU.ex

We say a topolgy T is closed under arbitrary unions.

It is nice to know about topological spaces in this generality, and it is nice to
have a working knowledge of some characteristic properties of such spaces.
We will discuss some of these topics presently. It is not always so nice to
have to work with a specific topological space if it does not have some ad-
ditional structure beyond the general definition. Very specifically, we will
almost always assume any topological space under consideration satisfies the
following condition concerning individual elements:

A topological space X, with topology ¥, is said to be Hausdorff
if given any z,y € X with z # y, there exist open sets Uy, Uy € ¥
for which

SL’GUl, yEUg, and UlﬁU2:¢.

The points & and y are said to be separated by the open sets U; and Us.
As mentioned above, a topological structure can be isolated in R". The
collection of open sets ¥, in R™ is the collection of all unions of open balls:

Eﬁ:{U:LJBMQQ€2XW@>OMMXQERWmaEF} (13.1)
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where I' is some index(ing) set and

for r > 0 and p = (p1,p2, - - ., Pn) € R™. Note carefully, I do not mean to say
I' is a fixed indexing set determined outside the expression/definition (13.1)
but rather the symbol I' as it appears in (13.1) simply denotes some set used
to index the centers x, and radii r, used to construct a particular open set

Ue%,.
Exercise 13.1. Show ¥, is a topology on R".
Exercise 13.2. Show ¥, is Hausdorff.

If you've never seen the definition of a topological space given above
(and you are reading these notes carefully and critically) then you might be
troubled that according to the definition, the “topology” is supposed to tell
you which sets are open, but the topology for R" is described in terms of
“open” balls. The resolution is easy: The first use of “open” in regard to the
“open” balls defined in (13.2) is just an informal use of the word and can be
freely omitted. But then, according to the definition (and the assertion of
Exercise 13.1) the sets defined in (13.2) are immediately seen to be open in
the technical sense of the definition. In fact, each open ball is the union of
the single open ball which is itself. Thus, every open ball is indeed an open
ball. Sometimes the open sets in R™ are introduced in a slightly different
way: A set A C R" is open if for each p € A, there is some r > 0 such
that B,(p) C A, where B,(p) is defined just as in (13.2). This leads to the
following standard exercise which is a little more interesting and should be
familiar to those who have seen topological spaces before.

Exercise 13.3. Show an open ball B,(p) in R" is open.

For those to whom Exercise 13.3 is old news, I offer Exercise 13.7 below.
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When all spaces under consideration share the same structure and the
focus of the discussion is primarily related to that specific structure, one
sometimes refers to the ensuing discussion as concerning the category of
such spaces. For example, this section in my notes is about (or takes place
in) the category® of topological spaces.

There is another homonymous use of words in the definition of topolog-
ical space above. Being “closed” under unions or intersections is altogether
entirely different from being topologically closed.

Definition 16. A subset A of a topological space X is said to be closed if
the set X\A ={x € X : x ¢ A}, i.e., the complement of A is open.

Again, if one has not encountered topological spaces of this sort (in this
generality or specifically using the definition above) there are at least a few
exercises one should do concerning the basics of open and closed sets. I will
try to remember and include some of them before this section is done. Here
is one:

Exercise 13.4. Let X be a topological space.

(a) Show an arbitrary intersection of closed sets is closed.

(b) Show a union of finitely many closed sets is closed.

(c) Show ¢ and X are closed.

(d) Give an example of a union of closed sets which is open and not closed.

(e) Try to find a proper subset of R (with the usual topology defined /described
above) which is not ¢ and is not R, but is both open and closed.

IThis is an informal usage of the word category. There is a formal mathematical subject
called category theory in which axioms defining exactly what is meant by a category are
laid down, and one attempts to pursue a discussion in the category of categories. It may
be presumed even from this phrase, that the subject is probbably of somewhat limited use.
In any case, I have no use for category theory. The informal use of the term “category”
however, and sometimes related terminology from category theory, can be suggestive and
convenient.
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Continuous functions

The main distinctive of topological spaces is that if you have two of them,
say X and Y, then it makes sense to talk about continuous functions

f:X—=Y

and the “space” CY(X — Y) of all such continuous functions.? Notice that
C°X — Y) is not a vector space or anything like that in this generality,
because there is no albebraic structure in sight here. What we do need,
however, is a definition.

Definition 17. Given topological spaces X and Y and a function f € VX,
we say f is continuous and write f € C°(X — V) if

V) ={zeX:f(z) eV}
is open in X whenever V' is an open set in Y.

For functions f: R — R (or f : R" — R™ or various related functions)
one usually introduces continuity at a point first, and the definition is
probably familiar: f : R — R is continuous at p € R if for any ¢ > 0, there
is some ¢ > 0 for which

f(Bs(p)) = {f(x) : |z —p| <0} C Be(f(p))-

The way I have written this should be fairly suggestive of how the definition
might look in more general situations. There are a bunch of at least nominally
interesting theorems saying things like: If f and g are continuous at a point
p € R, then f + g is continuous at p. These kinds of theorems do not
appear in the category of topological spaces because, as mentioned above,
you need algebraic structure (at least on the codomain) to make sense of
f+g:X — Y, soitissimply that the function f+ g does not really appear.

You can make a definition of pointwise continuity for a function f: X —
Y from one general topological space X to another Y, but then you do not
have any particularly interesting theorems to go with that definition (as far
as I know). If you know of such a theorem, let me know.

Returning to f : R — R, one says f is continuous on R if f is continuous
at each point p € R. Now we have two nominally different looking definitions
of continuity.

20ne might say the “morphisms” in the category of topological spaces are (the) con-
tinuous maps, were one inclined to say such things.
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Exercise 13.5. Let f: R — R be a function.

(a) Show that if for each p € R and each € > 0, there is some 6 > 0 for
which

f(Bs(p)) = {f(x) - |z —p| <8} € Be(f(p)),

then the inverse image of every open set is open, that is
fFHV)={reR: f(x) e V}
is open whenever V is an open subset of R.

(b) Show conversely, that if the inverse image of every open set is open, then
f is continuous at each point p € R.

Induced topologies

There are various general ways to create new topological spaces from topo-
logical spaces you have in hand. Two of the most important involve what
are called the subspace topology and the product topology.

Exercise 13.6. Given any topological space X and any subset A C X, show
the set
{ANU:U €T}

where ¥ is the topology on X is a topology on A. This topology is called the
subspace topology on A.

Exercise 13.7. Let A be a subset of R” considered as a topological subspace
of R™ with respect to the subspace topology. Show A is an open subset of
R™ if and only if every open set in A can be written as a union of open balls
B.(p) C A.

Perhaps the most important thing about the subspace topology is that
the construction is valid for absolutely any subset. The subspace A is not
required to be open, closed, or anything else. As a consequence, we can freely
talk about continuous functions on any subset of R or R™. In particular, the
real valued functions on a set A C R"™ denoted by C°(A) are well-defined
using the subspace topology on A. This kind of thing often doesn’t work
out so well if one is using some other structure beyond continuity to specify
functions. For example, if one wants to talk about derivatives of a function



13.1. TOPOLOGICAL SPACES 155

f + A — R which typically involves the consideration of increments at some
level, that is, expressions of the form

fp+v)—f(p),

then it makes things really convenient if A is open so that p +v € A when
the increment v = (p + v) — p is small.
The product topology gives a topology on a set

HX {x=(21,29,...,2,) :2; € X;, for j=1,2,...,n}

where Xj is a topological space with topology ¥; for j = 1,2,...,n. This
should look familiar, and a conflict or inconsistency in notation should be
noticed. I used the notation ¥, to denote the topology on R™. Here the
same symbol is used in connection with arbitrary topological spaces X; for
j=12,....n

Exercise 13.8. Given topological spaces X; for j = 1,2,...,n with topolo-
gies ¥, as described above, show the collection of unions of open cubes

{U: Ucazcazf[va,j, Vi €%, aEF}

acl j=1

is a topology where
H‘/J:{X: ($1,x2,--->$n) C Ly EV} fOI'jzl,Q,---,n}-

The convention concerning the index set I is similar to the one used in regard
o (13.1) above.

The topology defined in Exercise 13.8 is called the product topology.
The definition we have given works fine for finitely many factors (i.e., fac-
tor spaces X;). For now, we will attempt to avoid consideration of larger

products
I x.

aecl’
where I' is an infinite set and there are infinitely many topological spaces
X,. For infinitely many factors the situation becomes more complicated.

Exercise 13.9. Show that if one takes X; = R for j = 1,2,...,n in the
definition of the product topology in Exercise 13.8, then one gets the ball
topology defined on R™ at the beginning of this section.
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Homeomorphism

Given a bijection f € C°(X — Y) where X and Y are topological spaces,
there is an inverse function f=!:Y — X, but it is not always true that this
function is continuous.

Exercise 13.10. Consider f : [0,27) — S' by
f(z) = (cost,sint)
where [0,27) C R and
St = {(z,y) e R* : 2* +y* = 1} C R?

are considered in the subspace topology induced by the topologies on R' and
R? respectively.

(a) Show f € C°([0,27) — S*).
(b) Show f is a bijection.
(c) Show f=' ¢ C°(S' — [0,2m)).

Definition 18. If X and Y are topological spaces and f € C°(X —Y) is a
bijection and f~1 € C%(Y — X), then we say f is a homeomorphism.

Exercise 13.11. If X and Y are topological spaces and f € C°(X — Y) is
a bijection and

fU)=A{f(x): 2z U} is open in Y for every U open in X,
then f is a homeomorphism.
A function f € C%(X —Y) for which
fU)=A{f(x):z €U} is open in Y for every U open in X
is called an open mapping.

Exercise 13.12. Find an example of an open mapping which is not a home-
omorphism.
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Topology induced by a bijection

Exercise 13.13. If X is a topological space and f : X — Y is a bijection,
then show the following:

(a) Ty ={f(U) : U is open in X} is a topology on Y.
(b) Using ¥y to make Y a topological space, f is a homeomorphism.

(c) If X is a Hausdorff space, then the topology induced by f on Y is a
Hausdorff topology.

Connectedness and Compactness

Two mathematical concepts which are important for Riemannian geometry
and analysis in general are the concepts of connectedness and compact-
ness. These are essentially topological concepts, so it makes sense to intro-
duce them here.

Connectedness

The idea of a set being connected may be viewed as closely related to the
Hausdorff condition. The Hausdorff condition requires that two points can
be separated by open sets. More generally, two sets A and B with A, B # ¢
can be separated if there exist open sets Uy, Uy for which

ACUl, BCUQ, and UlﬁU2:¢.

A set C'in a topological space X is connected if C' cannot be partitoned into
nonempty sets that can be separated. That is, C' is connected if whenever
C = AU B with A, B # ¢, then A and B cannot be separated.

Exercise 13.14. Let C be a subset of a topological space X considered with
respect to the subspace topology on C. Show C'is connected if and only if
whenever C' = U; U U, for U; and U, disjoint open sets in C', then U; = ¢ or

Uy = ¢.

Exercise 13.15. Let C' be a connected topological space. Show that if
A C C is both open and closed, then A = C' or A = ¢.
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Exercise 13.16. A connecting path in a topological space X is a contin-
uous function v : [ — X where I = [a,b] C R for some a,b € R wtih a < b.
We say a connecting path connects the points x = a(a) and y = «(b), and a
topological space X is path connected if for every pair of points z,y € X
there exists a connecting path connecting x and y.

(a) Show a path connected space is connected.
(b) Given an example of a connected space which is not path connected.

(c) Show every connected open subset of R™ is path connected.

Exercise 13.17. The continuous image of a connected set is connected.
That is, if X and Y are topological spaces, f € C%(X — Y), and C C X is
connected, then

(@) ={f(z) :zeC}

is connected.

Simply connected spaces

Let X be a path connected topological space, and consider two paths « :
la,b] — X and [ : [a,b] — X defined on the same interval I = [a,b] C R
for some a,b € R with a < b and connecting the same points = = a(a) =
f(a) and y = a(b) = B(b). A homotopy deforming a to § is a function
h € C°[a,b] x [0,1] = X) satisfying the following:

(i) h(s,0) = a(t) for s € [a, 0].
(i) h(s,1) = B(¢) for s € [a,b].
(iii) h(a,t) =z for t € [0, 1].
(iv) h(b,t) =y for t € [0,1].

Technically, this might be called a fixed endpoint homotopy, but I think
this is mostly the only kind of homotopy we need to consider at the moment.

Exercise 13.18. Consider
X = B5(0)\B(0) = {x = (z1,22) € R*: 1 < 27 + 23 < 25}
and the paths « : [0,27] — X by a(s) = (4coss,4sins) and §: [0,271] — X
by
B(s) = (3 + coss,sin s).
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(a) Find a function h € C°([0,27] x [0,1] — X) satisfying
(i) h(s,0) = alt) for s € [a,b].
(ii) h(s,1) = B(t) for s € [a,b].

(a) Find a function g € C°([0,27] x [0,1] — X) satisfying
(i) g(s,0) = a(t) for s € [a, b].
(ii) g(s,1) = (4,0) for s € [a,b].

Note: The functions h and g in this exercise are not homotopies according
to the definiton given above.

A path connected topological space X is said to be simply connected
if given any path a € C%[a,b] — X) where [a,b] is an interval as in the
definition of a homotopy above and a(a) = «(b), there exists a homotopy
h € C%a,b] x [0,1] — X) for which h(s,0) = a(s) for s € [a,b] and
h(s,1) = «a(a) for s € [a, b].

Exercise 13.19. Show
St ={x=(v1,79,...,2,) ER" 125 + 25+ .-+ 22 =1} CR"
is simply connected for n > 3.

The Poincaré conjecture discussed in Chapter 7 is a conjecture about
certain simply connected topological spaces.

Compactness

A collection of sets { A, }aer where I' is some indexing set is said to cover a
set A if
4.0 A

ael

In the case where X is a topological space with topology ¥, we have a set
A C X, and {U, }aer C T satisfies

Jv.o4

ael

we say {U, }taer is an open cover of A.
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A set K in a topological space X is said to be compact if given any open
cover {U,}acr of K (by sets U, open in X) there exist fintely many indices
a1, Qa, ..., ap € ' for which

k
U, oK

J=1

That is to say, any open cover {U, }qer of K admits a finite subcover.

The requirement that the reduction to a finte subcover is possible for any
open cover is crucial. Some open covers of R" admit finite subcovers, but R"
is certainly not compact.

Exercise 13.20. Show R" is not compact.

Exercise 13.21. Let I = [a, b] for some a,b € R with a < b. Show that if A
is a closed subset of R and A C I = [a, b], then A is compact.

It is not true that every compact subset in a topological space is closed,
but it is often true.

Exercise 13.22. Show any compact set K in a Hausdorff topological space
X is closed.

Exercise 13.23. Show the continuous image of a compact set is compact.
That is, if X and Y are topological spaces, f € C%X — Y), and K is a
compact subset of X, then

f(K) ={f(z):z € K}

is compact.

Other exercises every individual should do at least once

Exercise 13.24. Every closed subset of a compact set in a topological space
is compact.

Exercise 13.25. Every open interval I = (a,b) with a,b € R and a < b is
homeomorphic to R.
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Exercise 13.26. Every open ball
B.(p) ={x=(z1,29,...,2,) ER" : |[x — p| <1}

where r > 0, p = (pl,pz, o >Pn)> and

Ix —p| =

is homeomorphic to R”.
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