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Here is the statement of Problem 7 of Assignment 1:

Check, as claimed in the Lecture 1 notes, that the image of the horizontal
segment {x+iy : −π/2 < x < π/2} (for y fixed) under the complex tangent
function lies on a circle with center at i coth(2y) on the imaginary axis.

Here is a detailed solution: We need to compute | tan z− i coth(2y)| where z = x+ iy,
and show that the resulting expression is independent of x, i.e., depends only on y.
If we can do this, we will have shown that tan z lies on a circle for y fixed, and the
value r = r(y) we obtain will be the radius of the circle. As a side note, this problem
could have been stated without giving the center of the circle. In that case, we could
conclude from the symmetry of the complex tangent that the circle would have to
be centered on the imaginary axis (as also suggested by my Mathematica plots), and
then we could come up with a conjectured center. In the next problem, Problem 8,
you are not told that the image is a circle or anything else, so you will have to come
up with your own conjecture (and then try to verify it).

Let M = cos2 x cosh2 y + sin2 x sinh2 y. We have already calculated the real and
imaginary parts of

tan z =
cosx sin x

M
+ i

cosh y sinh y

M
.

Here is an important observation/trick/strategy: Whenever you have an expression,
like M , involving only even powers of the basic trigonometric functions cosx and sin x
and the basic hyperbolic trigonometric functions cosh y and sinh y, then you can use
the identities cos2 x + sin2 x = 1 and cosh2 y − sinh2 y = 1 to express the value as
a unique polynomial in cosx and cosh y. This can be helpful if you are wanting
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to recognize particular values within certain expressions. This is our basic strategy
below.

Applying this observation to M , we see

M = cos2 x cosh2 y + (1− cos2 x)(cosh2 y − 1)

= cos2 x cosh2 y + cosh2 y − 1− cos2 x cosh2 y + cos2 x

= cos2 x+ cosh2 y − 1.

Not only is this a unique polynomial expression which can be identified elsewhere, it
is fairly simple. There may be other alternatives. For example, we could also note
that

cos(2x) + cosh(2y) = 2 cos2 x+ 2 cosh2 y − 2,

so

M =
1

2
[cos(2x) + cosh(2y)].

We won’t use this expression, but noting that we can also write

tan z =
1

2M
[sin(2x) + i sinh(2y)]

one suspects there is a slick solution of this problem all in terms of double an-
gles/arguments. I am not trying to present the slickest solution. I’ll leave that
to you.

I’m going to compute the square of the expression | tan z− i coth(2y)|. Recall that

coth(2y) =
cosh2 y + sinh2 y

2 cosh y sinh y
=

2 cosh2 y − 1

2 cosh y sinh y
.

In the last expression we don’t just get cosine and hyperbolic cosine because we do
not have only quadratic powers. Nevertheless,

|tan z − i coth(2y)|2 =

∣

∣

∣

∣

cosx sin x

M
+ i

(

cosh y sinh y

M
−

cosh2 y + sinh2 y

2 cosh y sinh y

)
∣

∣

∣

∣

2

=
cos2 x sin2 x

M2
+

(

cosh y sinh y

M
−

cosh2 y + sinh2 y

2 cosh y sinh y

)2

=
cos2 x sin2 x

M2
+

cosh2 y sinh2 y

M2
−

cosh2 y + sinh2 y

M

+

(

cosh2 y + sinh2 y

2 cosh y sinh y

)2

.
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Notice that the last term is independent of x. Thus, we focus on the first three terms:

1

M2
[cos2 x− cos4 x+ cosh4 y − cosh2 y −M(2 cosh2 y − 1)].

The expression M(2 cosh2 y − 1) expands as follows:

(2 cosh2 y−1)(cos2 x+cosh2 y−1) = 2 cos2 x cosh2 y+2 cosh4 y−3 cosh2 y−cos2 x+1.

Therefore,

cos2 x− cos4 x+ cosh4 y − cosh2 y −M(2 cosh2 y − 1) =

2 cos2 x− cos4 x− cosh4 y + 2 cosh2 y − 2 cos2 x cosh2 y − 1.

We expect to cancel a factor of M2 from this expression. And perhaps now you can
see it:

M2 = cos4 x+ 2 cos2 x cosh2 y − 2 cos2 x+ cosh4 y − 2 cosh2 y + 1.

That is, the numerator from the first three terms of | tan z − i coth(2y)|2 is

cos2 x− cos4 x+ cosh4 y − cosh2 y −M(2 cosh2 y − 1) = −M2.

Therefore,

| tan z − i coth(2y)|2 = −1 + coth2(2y) =
1

sinh2(2y)
= csch2(2y).

We have verified the assertion of the problem, and the radius is r = | csch(2y)|. �
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