Lecture 1: Complex Numbers Assignment Problems Due Friday August 28, 2020

John McCuan

August 23, 2020

Problem 1 The complex conjugate of a complex number z = x + iy is $\overline{z} = x - iy$. Find $z + \overline{z}$, $z - \overline{z}$, and $z\overline{z}$. Express $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, and |z| in terms of z and \overline{z} .

Problem 2 Draw the following subsets in the complex plane.

- (a) (Boas 2.4) $\{z \in \mathbb{C} : |z-2| = 1\}.$
- (b) (Boas 2.5.46) $\{z \in \mathbb{C} : z = -i\overline{z}\}.$
- (b) (Boas 2.5.52) $\{z \in \mathbb{C} : \operatorname{Re} z = 1\}$.

Problem 3 Check that the series expansions

$$\cos z = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2\ell}}{(2\ell)!}$$
 and $\sin z = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2\ell+1}}{(2\ell+1)!}$

hold for $z \in \mathbb{C}$ using the definitions

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

and the series expansion (definition) for the exponential.

Problem 4 Show that if one defines cosine and sine for complex arguments using the series expansions

$$\cos z = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2\ell}}{(2\ell)!}$$
 and $\sin z = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2\ell+1}}{(2\ell+1)!},$

then one can prove the formulas

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

Problem 5 Check that for z = x + iy

$$\cos z = \cos x \cosh y - i \sin x \sinh y$$

using the definitions

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
 and $\sinh x = \frac{e^x - e^{-x}}{2}$

for the real hyperbolic cosine and sine.

Problem 6 Plot the real hyperbolic cosine and sine. Derive the real McClauren series expansions for $\cosh x$ and $\sinh x$ and determine the radii of convergence for these series.

Problem 7 Check, as claimed in the Lecture 1 notes, that the image of the horizontal segment $\{x + iy : -\pi/2 < x < \pi/2\}$ (for y fixed) under the complex tangent function lies on a circle with center at $i \coth(2y)$ on the imaginary axis.

Problem 8 Determine the image of a vertical line $\{x + iy \in \mathbb{C} : y \in \mathbb{R}\}$ (with x fixed) under the complex tangent function.

Problem 9 Express Arg(z) properly in terms of a branch of the complex inverse tangent function.

Problem 10 Determine the value of the complex logarithm and determine the associated Riemann surface by understanding the complex exponential as a mapping.