Lecture 1: Complex Numbers Assignment Problems Due Friday August 28, 2020

John McCuan

August 23, 2020

Problem 1 The complex conjugate of a complex number $z=x+i y$ is $\bar{z}=x-i y$. Find $z+\bar{z}, z-\bar{z}$, and $z \bar{z}$. Express $\operatorname{Re}(z), \operatorname{Im}(z)$, and $|z|$ in terms of z and \bar{z}.

Problem 2 Draw the following subsets in the complex plane.
(a) (Boas 2.4) $\{z \in \mathbb{C}:|z-2|=1\}$.
(b) (Boas 2.5.46) $\{z \in \mathbb{C}: z=-i \bar{z}\}$.
(b) (Boas 2.5.52) $\{z \in \mathbb{C}: \operatorname{Re} z=1\}$.

Problem 3 Check that the series expansions

$$
\cos z=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2 \ell}}{(2 \ell)!} \quad \text { and } \quad \sin z=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2 \ell+1}}{(2 \ell+1)!}
$$

hold for $z \in \mathbb{C}$ using the definitions

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

and the series expansion (definition) for the exponential.
Problem 4 Show that if one defines cosine and sine for complex arguments using the series expansions

$$
\cos z=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2 \ell}}{(2 \ell)!} \quad \text { and } \quad \sin z=\sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2 \ell+1}}{(2 \ell+1)!}
$$

then one can prove the formulas

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Problem 5 Check that for $z=x+i y$

$$
\cos z=\cos x \cosh y-i \sin x \sinh y
$$

using the definitions

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \text { and } \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

for the real hyperbolic cosine and sine.
Problem 6 Plot the real hyperbolic cosine and sine. Derive the real McClauren series expansions for $\cosh x$ and $\sinh x$ and determine the radii of convergence for these series.

Problem 7 Check, as claimed in the Lecture 1 notes, that the image of the horizontal segment $\{x+i y:-\pi / 2<x<\pi / 2\}$ (for y fixed) under the complex tangent function lies on a circle with center at $i \operatorname{coth}(2 y)$ on the imaginary axis.

Problem 8 Determine the image of a vertical line $\{x+i y \in \mathbb{C}: y \in \mathbb{R}\}$ (with x fixed) under the complex tangent function.

Problem 9 Express $\operatorname{Arg}(z)$ properly in terms of a branch of the complex inverse tangent function.

Problem 10 Determine the value of the complex logarithm and determine the associated Riemann surface by understanding the complex exponential as a mapping.

