Assignment 2
 Due Friday September 4, 2020

John McCuan

August 25, 2020

Problem 1 (Boas 2.7.2) Discuss the domain of convergence of the complex alternating harmonic power series:

$$
z-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4}+\cdots
$$

Problem 2 (Boas 2.10.3) Find all the fourth roots of 1. These are also called the fourth roots of unity.

Problem 3 Find the real and imaginary parts of the following complex values and compare what you get to what a mathematical software package will tell you.
(a) (Boas 2.14.2) $\log (-i)$.
(b) (Boas 2.14.8) $i^{2 / 3}$.
(c) (Boas 2.14.11) 2^{i}.

Problem 4 Find a linear fractional transformation determined by the following values:

$$
\begin{array}{rlr}
1 & \mapsto & -1 \\
-1 & \mapsto & 1 \\
0 & \mapsto & i .
\end{array}
$$

What is the image of ∞ under your transformation?
Problem 5 Show that the complex tangent function has a complex period of π. This means

$$
\tan (z+\pi)=\tan z \quad \text { for every } z \in \mathbb{C}
$$

Problem 6 Draw a picture illustrating how it is possible for the function $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(z)=z^{2}$ to be conformal at all points in \mathbb{C} except $0 \in \mathbb{C}$.

Problem 7 (a) (Boas 14.2.30) Compute the complex derivative of $f(z)=z^{n}$ for n a positive integer.
(b) (Boas 14.2.33) Use the series definition of the complex exponential and termwise differentiation (from Chapters 1 and 2 of Boas if you want to read up on it) to compute the derivative of $f(z)=e^{z}$.

The remaining problems rely on an identification between points $(x, y) \in \mathbb{R}^{2}$ and $z=x+i y \in \mathbb{C}$. According to this identification, we may refer to an open subset \mathcal{U} of \mathbb{C} and the corresponding open set in \mathbb{R}^{2} by the same name \mathcal{U}. We can write

$$
f(z)=f(x+i y)=u(x, y)+i v(x, y)
$$

for

$$
f: \mathcal{U} \rightarrow \mathbb{C} \quad(\mathcal{U} \subset \mathbb{C}) \quad \text { and } \quad u: \mathcal{U} \rightarrow \mathbb{R} \quad\left(\mathcal{U} \subset \mathbb{R}^{2}\right)
$$

Sometimes we will take $\mathcal{U}=\mathbb{C}$ (and $\mathcal{U}=\mathbb{R}^{2}$ by identification).
Problem 8 Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear function given by

$$
L(x, y)=(x+y, y)
$$

and $f: \mathbb{C} \rightarrow \mathbb{C}$ be the corresponding complex function given by $f(z)=f(x+i y)=$ $u(x, y)+i v(x, y)$ where $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
u(x, y)=x+y \quad \text { and } \quad v(x, y)=y
$$

(a) Show that L is infinitely (real) differentiable, i.e., L has partial derivatives in all components with respect to all variables of all orders.
(b) Show that f is not (complex) differentiable.

Problem 9 Let \mathcal{U} be an open set as described above. Let $f: \mathcal{U} \rightarrow \mathbb{C}$ with $f(z)=$ $f(x+i y)=u(x, y)+i v(x, y)$ be differentiable.
(a) (See page 669 in Boas) Show

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
$$

(b) (See Theorem I on page 669 of Boas) Show

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} & =-\frac{\partial v}{\partial x}
\end{aligned}\right.
$$

These are called the Cauchy-Riemann Equations. They constitute a system of partial differential equations.
(c) (See Theorem IV part 1 on page 672 of Boas and Problem 14.2.44 of Boas) Show

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { and } \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

The (second order partial differential) operator

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

is called the Laplacian operator, and the partial differential equations $\Delta u=0$ and $\Delta v=0$ are (each) called Laplace's equation.

Problem 10 (a) Find a continuous function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with no first partial derivatives existing at one point.
(b) Find a continuous function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with with both first partial derivatives continuous on \mathbb{R}^{2} but no second partials existing at one point.
(c) Find a continuous function $j: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with both first partial derivatives and all three (or four) second partials existing and continuous but no third partials existing at one point.

