# Assignment 3 <br> Due Friday September 25, 2020 

John McCuan

September 22, 2020

Problem 1 (a) Look up and write down all the properties that define a vector space over a field.
(b) Verify in detail that each of the properties defining a vector space holds for the vector space

$$
\mathbb{C}^{2}=\{(z, w): z, w \in \mathbb{C}\}
$$

over the field $\mathbb{C}$ of complex numbers.
Problem 2 (Boas 3.7.1) If $\mathbf{w} \in \mathbb{R}^{n}$ is fixed, is $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{v})=\mathbf{v} \cdot \mathbf{w}+3
$$

linear? If $f$ is linear, express the values of $f$ using matrix multiplication.
Problem 3 (Boas 3.7.5) If $\mathbf{w} \in \mathbb{R}^{3}$ is fixed, is $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
\mathbf{F}(\mathbf{v})=\mathbf{v} \times \mathbf{w}
$$

linear? If $\mathbf{F}$ is linear, express the values of $\mathbf{F}$ using matrix multiplication.
Problem 4 Let $C^{0}[a, b]$ denote the set of real valued continuous functions defined on the interval $[a, b]$.
(a) Show that $C^{0}[a, b]$ is a (real) vector space.
(b) Consider $f: C^{0}[a, b] \rightarrow \mathbb{R}$ by

$$
f[\phi]=\int_{a}^{b} \phi(x) d x
$$

Is the function $f$ linear? Can you express $f$ using matrix multiplication?
(c) Consider the function $g: C^{0}[a, b] \rightarrow \mathbb{R}$ by

$$
g[\phi]=\phi\left(\frac{a+b}{2}\right) .
$$

Is the function $g$ linear?
(d) Consider the function $\mathbf{F}: C^{0}[a, b] \rightarrow C^{0}[a, b]$ by

$$
\mathbf{F}[\phi]=\phi^{2} .
$$

Is $\mathbf{F}$ linear?
Problem 5 (Boas 3.7.13) Let $C^{2}(a, b)$ denote the set of twice continuously differentiable real valued functions on the interval $(a, b)$.
(a) Show that $C^{2}(a, b)$ is a (real) vector space.
(b) Consider $f: C^{2}(a, b) \rightarrow C^{0}(a, b)$ by

$$
f[\phi]=x^{2} \frac{d^{2} \phi}{d x^{2}}+\left(1+x^{2}\right) \frac{d \phi}{d x}+\phi
$$

That is, $f[\phi]$ is the function $\psi:(a, b) \rightarrow \mathbb{R}$ given by

$$
\psi(x)=x^{2} \frac{d^{2} \phi}{d x^{2}}(x)+\left(1+x^{2}\right) \frac{d \phi}{d x}(x)+\phi(x) .
$$

Is the function $f$ linear?
Problem 6 (Boas 3.7.16) Let $M_{n}(\mathbb{C})$ denote the set of all $n \times n$ matrices with complex entries.
(a) Show that $M_{n}(\mathbb{C})$ is a (complex) vector space.
(b) Consider $f: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
f(A)=A^{-1} \quad(\text { the inverse matrix of } A)
$$

Is the function $f$ linear? If so, express $f$ using matrix multiplication.
Problem 7 (Boas 3.7.28) Consider $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $L \mathbf{v}$ is the right-handed (counterclockwise) rotation of $\mathbf{v}$ about the $x$-axis. Express $L$ using matrix multiplication (with respect to the standard basis).

Problem 8 (polynomials) Let

$$
Q[z]=\left\{a_{2} z^{2}+a_{1} z+a_{0}: a_{2}, a_{1}, a_{0} \in \mathbb{C}\right\}
$$

be the collection of all quadratic (and lower degree) polynomials in a complex variable $z$.
(a) Show $Q[z]$ is a vector space over $\mathbb{C}$.
(b) Let $L: Q[z] \rightarrow Q[z]$ by $L[p]=p^{\prime}$ (the complex derivative). Show that $L$ is linear.
(c) Find a basis for $Q[z]$ and express $L$ using matrix multiplication with respect to the basis you have chosen.

Problem 9 (Boas 3.7.22) Consider the transformation of the plane given by $T(x, y)=$ $(\xi, \eta)$ where

$$
\xi=\frac{1}{\sqrt{2}}(x+y) \quad \text { and } \quad \eta=\frac{1}{\sqrt{2}}(-x+y)
$$

(a) Find $T(1,0), T(0,1)$, and $T(1,1)$. Draw a picture to indicate the action of the function $f$ using these values.
(b) Describe the transformation $T$ of the plane in (five) words.

Problem 10 Consider the nonlinear function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=\left(\sin (3 x), y^{2}\right)
$$

(a) Can you draw a picture indicating the action of the function $f$ on the plane?
(b) Find a linear function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which approximates $f$ to first order near the point $\left(x_{0}, y_{0}\right)=(0,0)$.

