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Problem 1 Describe all linear functions L : C — C.

Solution: L(z) = L(1)z. This means there is a fixed complex number L(1) € C and
L is given simply by multiplication by this number.
It may (and should) be noted as well that L(1) can be written in the form

L(1) = re®

for some real numbers r > 0 and 6 € [0, 27). Similarly,

z = |z\eiArgz.
Thus
7 L(Z) _ T|Z|6i(Argz+6).

In this way we see L is a rotation (by 6) of the plane followed by a dilation or
(isotropic) radial scaling (by r > 0). These (rotation and scaling) commute, so they
can be executed in either order.

Finally, then one should observe that while dilation followed by scaling always
gives a linear transformation of R?, there are many other linear transformations of
R2. Thus, the collection of complex linear functions L : C — C can be compared to
the collection of linear transformations L : R? — R?, and in that comparison is seen
to be a strikingly much smaller collection. For example, the projection onto the
real part L : C — C by L(z) = Rez is not linear. Do you see why? (Hint: Take a
look at L(ai) where a is real. This should be iL(a). What is the projection onto the
real part of ia?)



Problem 2 Say L : R? — R! is a linear function with one-dimensional kernel
spanned by a vector v # 0. Let w € R?\ ker L.

(a) Show that every vector x € R? can be written uniquely as
X = aw + bv,
i.e., {v,w} is a basis for R?.

(b) Ifx € R? and
X =aw + bv = evt + dv

where v is the (counterclockwise) rotation by w/2 of v, then what is the relation
between a and b and c and d?

(c) If L is expressed in coordinates using the basis {v*,v} for the domain R? and
the basis {Lw} for the codomain, then what is the matriz of L?

Solution: The question here revolves around the systems

{(V-w)a + (v-v)b = x-v
(W-w)a + (v-w)b = x-w

(1)
and
XV

v|?d = x-v
{ 1ope - ®)

for the coefficients. For part (a), we know the system has a unique solution given by
the Cramer’s rule formula (that’s just a straightforward calculation) as long as the
determinant of the coefficient matrix is nonzero. That is, the desired existence and
uniqueness follows if we can show

(v w)? = [v[]w]* # 0. (3)

In fact, the Cauchy-Schwarz inequality says that v - w < |v||w|, so the quantity in
(3) will be strictly negative unless equality holds in the Cauchy-Schwarz inequality.
One proof of the Cauchy-Schwarz inequality goes like this: For any real number ¢

w+tv]>>0

with equality only if w + tv = 0 (because, for example, any inner product induced
norm is positive definite). On the one hand, if we had w = —tv, then we would have
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Lw = —tLv = 0. This would mean w € ker(L), so that gives a contradiction. Thus,
we can start with a strict inequality

|w 4 tv|* > 0

On the other hand, expanding the square of the norm in terms of the inner product
(which in this case is the Euclidean dot product) we get

0 < |w|*+2(v-w)t+t|v|>

We know here that |v|? > 0, so this quadratic polynomial in ¢ achieves its minimum
value as a function of ¢t when ¢t = —(v-w)/|v|?. That is, we can take t = —(v-w)/|v|?
and conclude

0<|w|*—2

2 < |v|*|w|?* which implies (3), so we are

Rearranging this inequality gives (v - w)
done.
An alternative argument for part (a) may be given using standard coordinates as

follows: Instead of (1), in standard coordinates we obtain the system

wia  + Ulb = I
wya + Vb = I

(4)

where wy = W - ey, wy = W - €y, v1 = v -eq, and so on. We know that this system
has a unique solution (given by Cramer’s rule) if wivy — viwy # 0. Remember, as
mentioned above, we know w is not a multiple of v. We need to show this implies
the non-vanishing of the quantity

W1V — V1W2

which I guess can be done, but is kind of a pain in the neck. Let’s see. If wivy = viwo,
then in the case v9 # 0, we can solve for w; to find

W = (VW /vy, wy) = (wa/ve)V.

Since that is a contradiction, we must have v, = 0 and v = v;e;. Also, we must have
(assuming wyvy = vws) that
V1Wy = 0.

This means ws = 0, since v = vie; # 0. Therefore, w = wie;. Again, w € ker(L),
and we get a contradiction. I guess there were only two cases to consider.



In any case, the implication of these contradictions is that wjvy — viwy # 0 as we
were supposed to show.
This brings us to part (b). Notice that the second system (2) has solution

X'VJ' XV

TR T VR

Substituting x = aw + bv in particular, we get

1

W -V
C:CLW’ d:aw‘i‘b

That is, there is a linear relation

()= D)

This relation can be written, alternatively, as

(5) =5 (cwevip woetiwe ) (7))

For this second expression, we need to note that w - vt # 0. Do you see why?
(Hint: If you substitute x = w in the system for the coefficients ¢ and d (and assume
w - vt =0) then you find w = dv.)

These relations correspond to a linear function ¢ : R?> — R? and its inverse.

If you were given the matrix of L with respect to the basis B = {w,v} (in
the domain) and you wanted to find the matrix for L with respect to the basis
N = {vt,v} (for the domain of L), then this linear relation would be helpful for you.
I didn’t make working out the details of this part of the problem, because I didn’t
want to make it too long. But you can work out those details in your spare time.

Instead I gave you part (¢): Find the matrix of L using N for the domain and
{Lw} for the co-domain of L. This means, we need to find the images of the basis
vectors v+ and v and write those as the columns of the matrix. The image of v is,
well, Lv=*, but that is not very helpful since we need to express this vector in terms
of the basis {Lw}. Let’s use the system (1) of part (a) to write v as

L IvPw eyt (v-w)(w-v?)
Vo= —
VEWE = (v-w) " VEw) — (v-w)




Therefore,

[v|?w - vt

Lvt =
VT NVEWE S (v w)

Lw,
and that’s our first column. Naturally, Lv = 0, so the matrix is the row vector
[v]*w - vt 0
VPIw = (v-w)" )

Now, you could change basis to B for the domain and use the matrix for the change
of basis ¢ to see how the matrix for L changes.




