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Problem 1 Describe all linear functions L : C → C.

Solution: L(z) = L(1)z. This means there is a fixed complex number L(1) ∈ C and
L is given simply by multiplication by this number.

It may (and should) be noted as well that L(1) can be written in the form

L(1) = reiθ

for some real numbers r > 0 and θ ∈ [0, 2π). Similarly,

z = |z|eiArg z.

Thus,
L(z) = r|z|ei(Arg z+θ).

In this way we see L is a rotation (by θ) of the plane followed by a dilation or
(isotropic) radial scaling (by r > 0). These (rotation and scaling) commute, so they
can be executed in either order.

Finally, then one should observe that while dilation followed by scaling always
gives a linear transformation of R2, there are many other linear transformations of
R2. Thus, the collection of complex linear functions L : C → C can be compared to
the collection of linear transformations L : R2 → R2, and in that comparison is seen
to be a strikingly much smaller collection. For example, the projection onto the
real part L : C → C by L(z) = Re z is not linear. Do you see why? (Hint: Take a
look at L(ai) where a is real. This should be iL(a). What is the projection onto the
real part of ia?)
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Problem 2 Say L : R2 → R1 is a linear function with one-dimensional kernel
spanned by a vector v 6= 0. Let w ∈ R2\ kerL.

(a) Show that every vector x ∈ R2 can be written uniquely as

x = aw + bv,

i.e., {v,w} is a basis for R2.

(b) If x ∈ R
2 and

x = aw + bv = cv⊥ + dv

where v⊥ is the (counterclockwise) rotation by π/2 of v, then what is the relation
between a and b and c and d?

(c) If L is expressed in coordinates using the basis {v⊥,v} for the domain R2 and
the basis {Lw} for the codomain, then what is the matrix of L?

Solution: The question here revolves around the systems

{

(v ·w) a + (v · v) b = x · v
(w ·w) a + (v ·w) b = x ·w

(1)

and
{

|v|2 d = x · v
|v|2 c = x · v⊥ (2)

for the coefficients. For part (a), we know the system has a unique solution given by
the Cramer’s rule formula (that’s just a straightforward calculation) as long as the
determinant of the coefficient matrix is nonzero. That is, the desired existence and
uniqueness follows if we can show

(v ·w)2 − |v|2|w|2 6= 0. (3)

In fact, the Cauchy-Schwarz inequality says that v · w ≤ |v||w|, so the quantity in
(3) will be strictly negative unless equality holds in the Cauchy-Schwarz inequality.
One proof of the Cauchy-Schwarz inequality goes like this: For any real number t

|w + tv|2 ≥ 0

with equality only if w + tv = 0 (because, for example, any inner product induced
norm is positive definite). On the one hand, if we had w = −tv, then we would have
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Lw = −tLv = 0. This would mean w ∈ ker(L), so that gives a contradiction. Thus,
we can start with a strict inequality

|w + tv|2 > 0

On the other hand, expanding the square of the norm in terms of the inner product
(which in this case is the Euclidean dot product) we get

0 < |w|2 + 2(v ·w)t+ t2|v|2.

We know here that |v|2 > 0, so this quadratic polynomial in t achieves its minimum
value as a function of t when t = −(v ·w)/|v|2. That is, we can take t = −(v ·w)/|v|2

and conclude

0 < |w|2 − 2
(v ·w)2

|v|2
+

(v ·w)2

|v|2
.

Rearranging this inequality gives (v · w)2 < |v|2|w|2 which implies (3), so we are
done.

An alternative argument for part (a) may be given using standard coordinates as
follows: Instead of (1), in standard coordinates we obtain the system

{

w1a + v1 b = x1

w2 a + v2 b = x2
(4)

where w1 = w · e1, w2 = w · e2, v1 = v · e1, and so on. We know that this system
has a unique solution (given by Cramer’s rule) if w1v2 − v1w2 6= 0. Remember, as
mentioned above, we know w is not a multiple of v. We need to show this implies
the non-vanishing of the quantity

w1v2 − v1w2

which I guess can be done, but is kind of a pain in the neck. Let’s see. If w1v2 = v1w2,
then in the case v2 6= 0, we can solve for w1 to find

w = (v1w2/v2, w2) = (w2/v2)v.

Since that is a contradiction, we must have v2 = 0 and v = v1e1. Also, we must have
(assuming w1v2 = v1w2) that

v1w2 = 0.

This means w2 = 0, since v = v1e1 6= 0. Therefore, w = w1e1. Again, w ∈ ker(L),
and we get a contradiction. I guess there were only two cases to consider.
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In any case, the implication of these contradictions is that w1v2 − v1w2 6= 0 as we
were supposed to show.

This brings us to part (b). Notice that the second system (2) has solution

c =
x · v⊥

|v|2
, d =

x · v

|v|2
.

Substituting x = aw + bv in particular, we get

c = a
w · v⊥

|v|2
, d = a

w · v

|v|2
+ b.

That is, there is a linear relation

(

c
d

)

=

(

w · v⊥/|v|2 0
w · v/|v|2 1

)(

a
b

)

.

This relation can be written, alternatively, as

(

a
b

)

=
|v|2

w · v⊥

(

1 0
−w · v/|v|2 w · v⊥/|v|2

)(

c
d

)

.

For this second expression, we need to note that w · v⊥ 6= 0. Do you see why?
(Hint: If you substitute x = w in the system for the coefficients c and d (and assume
w · v⊥ = 0) then you find w = dv.)

These relations correspond to a linear function q : R2 → R
2 and its inverse.

If you were given the matrix of L with respect to the basis B = {w,v} (in
the domain) and you wanted to find the matrix for L with respect to the basis
N = {v⊥,v} (for the domain of L), then this linear relation would be helpful for you.
I didn’t make working out the details of this part of the problem, because I didn’t
want to make it too long. But you can work out those details in your spare time.

Instead I gave you part (c): Find the matrix of L using N for the domain and
{Lw} for the co-domain of L. This means, we need to find the images of the basis
vectors v⊥ and v and write those as the columns of the matrix. The image of v⊥ is,
well, Lv⊥, but that is not very helpful since we need to express this vector in terms
of the basis {Lw}. Let’s use the system (1) of part (a) to write v⊥ as

v⊥ =
|v|2w · v⊥

|v|2|w|2 − (v ·w)
w −

(v ·w)(w · v⊥)

|v|2|w|2 − (v ·w)
v.

4



Therefore,

Lv⊥ =
|v|2w · v⊥

|v|2|w|2 − (v ·w)
Lw,

and that’s our first column. Naturally, Lv = 0, so the matrix is the row vector

(

|v|2w · v⊥

|v|2|w|2 − (v ·w)
, 0

)

.

Now, you could change basis to B for the domain and use the matrix for the change
of basis q to see how the matrix for L changes.
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