Assignment 4
 Due Monday October 2, 2020

John McCuan

October 16, 2020

Problem 1 Describe all linear functions $L: \mathbb{C} \rightarrow \mathbb{C}$.
Solution: $L(z)=L(1) z$. This means there is a fixed complex number $L(1) \in \mathbb{C}$ and L is given simply by multiplication by this number.

It may (and should) be noted as well that $L(1)$ can be written in the form

$$
L(1)=r e^{i \theta}
$$

for some real numbers $r>0$ and $\theta \in[0,2 \pi)$. Similarly,

$$
z=|z| e^{i \operatorname{Arg} z}
$$

Thus,

$$
L(z)=r|z| e^{i(\operatorname{Arg} z+\theta)} .
$$

In this way we see L is a rotation (by θ) of the plane followed by a dilation or (isotropic) radial scaling (by $r>0$). These (rotation and scaling) commute, so they can be executed in either order.

Finally, then one should observe that while dilation followed by scaling always gives a linear transformation of \mathbb{R}^{2}, there are many other linear transformations of \mathbb{R}^{2}. Thus, the collection of complex linear functions $L: \mathbb{C} \rightarrow \mathbb{C}$ can be compared to the collection of linear transformations $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and in that comparison is seen to be a strikingly much smaller collection. For example, the projection onto the real part $L: \mathbb{C} \rightarrow \mathbb{C}$ by $L(z)=\operatorname{Re} z$ is not linear. Do you see why? (Hint: Take a look at $L(a i)$ where a is real. This should be $i L(a)$. What is the projection onto the real part of $i a$?)

Problem 2 Say $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ is a linear function with one-dimensional kernel spanned by a vector $\mathbf{v} \neq \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^{2} \backslash \operatorname{ker} L$.
(a) Show that every vector $\mathbf{x} \in \mathbb{R}^{2}$ can be written uniquely as

$$
\mathbf{x}=a \mathbf{w}+b \mathbf{v}
$$

i.e., $\{\mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^{2}.
(b) If $\mathrm{x} \in \mathbb{R}^{2}$ and

$$
\mathbf{x}=a \mathbf{w}+b \mathbf{v}=c \mathbf{v}^{\perp}+d \mathbf{v}
$$

where \mathbf{v}^{\perp} is the (counterclockwise) rotation by $\pi / 2$ of \mathbf{v}, then what is the relation between a and b and c and d?
(c) If L is expressed in coordinates using the basis $\left\{\mathbf{v}^{\perp}, \mathbf{v}\right\}$ for the domain \mathbb{R}^{2} and the basis $\{L \mathbf{w}\}$ for the codomain, then what is the matrix of L ?

Solution: The question here revolves around the systems

$$
\left\{\begin{align*}
(\mathbf{v} \cdot \mathbf{w}) a+(\mathbf{v} \cdot \mathbf{v}) b & =\mathbf{x} \cdot \mathbf{v} \tag{1}\\
(\mathbf{w} \cdot \mathbf{w}) a+(\mathbf{v} \cdot \mathbf{w}) b & =\mathbf{x} \cdot \mathbf{w}
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
|\mathbf{v}|^{2} d & =\mathbf{x} \cdot \mathbf{v} \tag{2}\\
|\mathbf{v}|^{2} c & \\
& =\mathbf{x} \cdot \mathbf{v}^{\perp}
\end{align*}\right.
$$

for the coefficients. For part (a), we know the system has a unique solution given by the Cramer's rule formula (that's just a straightforward calculation) as long as the determinant of the coefficient matrix is nonzero. That is, the desired existence and uniqueness follows if we can show

$$
\begin{equation*}
(\mathbf{v} \cdot \mathbf{w})^{2}-|\mathbf{v}|^{2}|\mathbf{w}|^{2} \neq 0 \tag{3}
\end{equation*}
$$

In fact, the Cauchy-Schwarz inequality says that $\mathbf{v} \cdot \mathbf{w} \leq|\mathbf{v}||\mathbf{w}|$, so the quantity in (3) will be strictly negative unless equality holds in the Cauchy-Schwarz inequality. One proof of the Cauchy-Schwarz inequality goes like this: For any real number t

$$
|\mathbf{w}+t \mathbf{v}|^{2} \geq 0
$$

with equality only if $\mathbf{w}+t \mathbf{v}=0$ (because, for example, any inner product induced norm is positive definite). On the one hand, if we had $\mathbf{w}=-t \mathbf{v}$, then we would have
$L \mathbf{w}=-t L \mathbf{v}=0$. This would mean $\mathbf{w} \in \operatorname{ker}(L)$, so that gives a contradiction. Thus, we can start with a strict inequality

$$
|\mathbf{w}+t \mathbf{v}|^{2}>0
$$

On the other hand, expanding the square of the norm in terms of the inner product (which in this case is the Euclidean dot product) we get

$$
0<|\mathbf{w}|^{2}+2(\mathbf{v} \cdot \mathbf{w}) t+t^{2}|\mathbf{v}|^{2}
$$

We know here that $|\mathbf{v}|^{2}>0$, so this quadratic polynomial in t achieves its minimum value as a function of t when $t=-(\mathbf{v} \cdot \mathbf{w}) /|\mathbf{v}|^{2}$. That is, we can take $t=-(\mathbf{v} \cdot \mathbf{w}) /|\mathbf{v}|^{2}$ and conclude

$$
0<|\mathbf{w}|^{2}-2 \frac{(\mathbf{v} \cdot \mathbf{w})^{2}}{|\mathbf{v}|^{2}}+\frac{(\mathbf{v} \cdot \mathbf{w})^{2}}{|\mathbf{v}|^{2}}
$$

Rearranging this inequality gives $(\mathbf{v} \cdot \mathbf{w})^{2}<|\mathbf{v}|^{2}|\mathbf{w}|^{2}$ which implies (3), so we are done.

An alternative argument for part (a) may be given using standard coordinates as follows: Instead of (1), in standard coordinates we obtain the system

$$
\left\{\begin{array}{l}
w_{1} a+v_{1} b=x_{1} \tag{4}\\
w_{2} a+v_{2} b=x_{2}
\end{array}\right.
$$

where $w_{1}=\mathbf{w} \cdot \mathbf{e}_{1}, w_{2}=\mathbf{w} \cdot \mathbf{e}_{2}, v_{1}=\mathbf{v} \cdot \mathbf{e}_{1}$, and so on. We know that this system has a unique solution (given by Cramer's rule) if $w_{1} v_{2}-v_{1} w_{2} \neq 0$. Remember, as mentioned above, we know \mathbf{w} is not a multiple of \mathbf{v}. We need to show this implies the non-vanishing of the quantity

$$
w_{1} v_{2}-v_{1} w_{2}
$$

which I guess can be done, but is kind of a pain in the neck. Let's see. If $w_{1} v_{2}=v_{1} w_{2}$, then in the case $v_{2} \neq 0$, we can solve for w_{1} to find

$$
\mathbf{w}=\left(v_{1} w_{2} / v_{2}, w_{2}\right)=\left(w_{2} / v_{2}\right) \mathbf{v}
$$

Since that is a contradiction, we must have $v_{2}=0$ and $\mathbf{v}=v_{1} \mathbf{e}_{1}$. Also, we must have (assuming $w_{1} v_{2}=v_{1} w_{2}$) that

$$
v_{1} w_{2}=0
$$

This means $w_{2}=0$, since $\mathbf{v}=v_{1} \mathbf{e}_{1} \neq 0$. Therefore, $\mathbf{w}=w_{1} \mathbf{e}_{1}$. Again, $\mathbf{w} \in \operatorname{ker}(L)$, and we get a contradiction. I guess there were only two cases to consider.

In any case, the implication of these contradictions is that $w_{1} v_{2}-v_{1} w_{2} \neq 0$ as we were supposed to show.

This brings us to part (b). Notice that the second system (2) has solution

$$
c=\frac{\mathbf{x} \cdot \mathbf{v}^{\perp}}{|\mathbf{v}|^{2}}, \quad d=\frac{\mathbf{x} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}
$$

Substituting $\mathbf{x}=a \mathbf{w}+b \mathbf{v}$ in particular, we get

$$
c=a \frac{\mathbf{w} \cdot \mathbf{v}^{\perp}}{|\mathbf{v}|^{2}}, \quad d=a \frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}+b
$$

That is, there is a linear relation

$$
\binom{c}{d}=\left(\begin{array}{cc}
\mathbf{w} \cdot \mathbf{v}^{\perp} /|\mathbf{v}|^{2} & 0 \\
\mathbf{w} \cdot \mathbf{v} /|\mathbf{v}|^{2} & 1
\end{array}\right)\binom{a}{b} .
$$

This relation can be written, alternatively, as

$$
\binom{a}{b}=\frac{|\mathbf{v}|^{2}}{\mathbf{w} \cdot \mathbf{v}^{\perp}}\left(\begin{array}{cc}
1 & 0 \\
-\mathbf{w} \cdot \mathbf{v} /|\mathbf{v}|^{2} & \mathbf{w} \cdot \mathbf{v}^{\perp} /|\mathbf{v}|^{2}
\end{array}\right)\binom{c}{d} .
$$

For this second expression, we need to note that $\mathbf{w} \cdot \mathbf{v}^{\perp} \neq 0$. Do you see why? (Hint: If you substitute $\mathbf{x}=\mathbf{w}$ in the system for the coefficients c and d (and assume $\mathbf{w} \cdot \mathbf{v}^{\perp}=0$) then you find $\mathbf{w}=d \mathbf{v}$.)

These relations correspond to a linear function $q: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and its inverse.
If you were given the matrix of L with respect to the basis $\mathcal{B}=\{\mathbf{w}, \mathbf{v}\}$ (in the domain) and you wanted to find the matrix for L with respect to the basis $\mathcal{N}=\left\{\mathbf{v}^{\perp}, \mathbf{v}\right\}$ (for the domain of L), then this linear relation would be helpful for you. I didn't make working out the details of this part of the problem, because I didn't want to make it too long. But you can work out those details in your spare time.

Instead I gave you part (c): Find the matrix of L using \mathcal{N} for the domain and $\{L \mathbf{w}\}$ for the co-domain of L. This means, we need to find the images of the basis vectors \mathbf{v}^{\perp} and \mathbf{v} and write those as the columns of the matrix. The image of \mathbf{v}^{\perp} is, well, $L \mathbf{v}^{\perp}$, but that is not very helpful since we need to express this vector in terms of the basis $\{L \mathbf{w}\}$. Let's use the system (1) of part (a) to write \mathbf{v}^{\perp} as

$$
\mathbf{v}^{\perp}=\frac{|\mathbf{v}|^{2} \mathbf{w} \cdot \mathbf{v}^{\perp}}{|\mathbf{v}|^{2}|\mathbf{w}|^{2}-(\mathbf{v} \cdot \mathbf{w})} \mathbf{w}-\frac{(\mathbf{v} \cdot \mathbf{w})\left(\mathbf{w} \cdot \mathbf{v}^{\perp}\right)}{|\mathbf{v}|^{2}|\mathbf{w}|^{2}-(\mathbf{v} \cdot \mathbf{w})} \mathbf{v}
$$

Therefore,

$$
L \mathbf{v}^{\perp}=\frac{|\mathbf{v}|^{2} \mathbf{w} \cdot \mathbf{v}^{\perp}}{|\mathbf{v}|^{2}|\mathbf{w}|^{2}-(\mathbf{v} \cdot \mathbf{w})} L \mathbf{w}
$$

and that's our first column. Naturally, $L \mathbf{v}=0$, so the matrix is the row vector

$$
\left(\frac{|\mathbf{v}|^{2} \mathbf{w} \cdot \mathbf{v}^{\perp}}{|\mathbf{v}|^{2}|\mathbf{w}|^{2}-(\mathbf{v} \cdot \mathbf{w})}, 0\right) .
$$

Now, you could change basis to \mathcal{B} for the domain and use the matrix for the change of basis q to see how the matrix for L changes.

