# Assignment 4 <br> Due Monday October 2, 2020 

John McCuan

September 25, 2020

Problem 1 Describe all linear functions $L: \mathbb{C} \rightarrow \mathbb{C}$.
Problem 2 Say $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ is a linear function with one-dimensional kernel spanned by a vector $\mathbf{v} \neq \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^{2} \backslash \operatorname{ker} L$.
(a) Show that every vector $\mathbf{x} \in \mathbb{R}^{2}$ can be written uniquely as

$$
\mathbf{x}=a \mathbf{w}+b \mathbf{v},
$$

i.e., $\{\mathbf{v}, \mathbf{w}\}$ is a basis for $\mathbb{R}^{2}$.
(b) If $\mathrm{x} \in \mathbb{R}^{2}$ and

$$
\mathbf{x}=a \mathbf{w}+b \mathbf{v}=c \mathbf{v}^{\perp}+d \mathbf{v}
$$

where $\mathbf{v}^{\perp}$ is the (counterclockwise) rotation by $\pi / 2$ of $\mathbf{v}$, then what is the relation between $a$ and $b$ and $c$ and d?
(c) If $L$ is expressed in coordinates using the basis $\left\{\mathbf{v}^{\perp}, \mathbf{v}\right\}$ for the domain $\mathbb{R}^{2}$ and the basis $\{L \mathbf{w}\}$ for the codomain, then what is the matrix of $L$ ?

Problem 3 (Boas 3.14.4) Consider the vector space

$$
P_{2}[x]=\left\{a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}: a_{j} \in \mathbb{R}, j=0,1,2, \ldots, 3\right\}
$$

(over $\mathbb{R}$ ).
(a) Find a linear function $L_{0}: P_{3}[x] \rightarrow \mathbb{R}$ for which

$$
\operatorname{ker} L_{0}=\left\{a_{3} x^{3}+a_{2} x^{2}+a_{1} x: a_{j} \in \mathbb{R}, j=1,2, \ldots, 3\right\}
$$

Extra credit for giving a formula for $L_{0}[p]$ which does not involve the coefficient expression for $p$ directly. Hint: Use evaluation of $p$.
(b) Consider $L_{1} ; P_{3}[x] \rightarrow \mathbb{R}$ by $L_{1}[p]=p^{\prime \prime}(0)$. What is $\operatorname{ker} L_{1}$ ?
(c) If $L_{2}: P_{3}[x] \rightarrow \mathbb{R}$ has

$$
\operatorname{dim}\left\{L_{2}[p]: p \in P_{3}[x]\right\}=2
$$

what is the dimension of the kernel of $L_{2}$ ?
Problem 4 Let $\alpha_{1}, \alpha_{2} \in \mathbb{R} \backslash\{0\}$, and consider $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
L\binom{x}{y}=\binom{\alpha_{1} x}{\alpha_{2} y}
$$

(a) Find the eigenvalues and eigenvectors of $L$.
(b) Show that

$$
\left\{L\binom{x}{y}: x^{2}+y^{2}=1\right\}
$$

is an ellipse with semiaxes having lengths $\left|\alpha_{1}\right|$ and $\left|\alpha_{2}\right|$.
(c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be counterclockwise rotation of $\mathbb{R}^{2}$ by the angle $\theta=\pi / 4$. Find the matrix $A$ such that

$$
T \circ L\binom{x}{y}=A\binom{x}{y} .
$$

(d) Find real numbers $a, b$, and $c$ such that

$$
\left\{T \circ L\binom{x}{y}: x^{2}+y^{2}=1\right\}=\left\{\binom{x}{y} \in \mathbb{R}^{2}: a x^{2}+b x y+c y^{2}=1\right\}
$$

Problem 5 (General Fact about linear functions) If $L: V \rightarrow W$ is linear and one-to-one, then $\operatorname{ker}(L)=\left\{0_{V}\right\}$.

Problem 6 (linear automorphisms of a finite dimensional space) Consider a linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Show the following:
(a) If $L$ is one-to-one, then $L$ is onto.
(b) If $L$ is onto, then $L$ is one-to-one.

Problem 7 Consider

$$
\frac{d}{d x}: P[x] \rightarrow P[x]
$$

where $P[x]$ denotes the vector space of polynomials with real coefficients (over $\mathbb{R}$ ). Show that $d / d x$ is onto but not one-to-one.

Problem 8 Find an example of a linear function $L: V \rightarrow V$ which is one-to-one but not onto.

Problem 9 (products and geometry in $\mathbb{R}^{3}$ ) The cross product of two vectors

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

is defined by

$$
\mathbf{x} \times \mathbf{y}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \times\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
x_{2} y_{3}-x_{3} y_{2} \\
-\left(x_{1} y_{3}-x_{3} y_{1}\right) \\
x_{1} y_{2}-x_{2} y_{1}
\end{array}\right) .
$$

Two vectors $\mathbf{x}$ and $\mathbf{y}$ are said to be parallel if $\mathbf{x} \times \mathbf{y}=\mathbf{0}$.
The dot product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$ is defined by

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{j=1}^{3} x_{j} y_{j} .
$$

Two vectors $\mathbf{x}$ and $\mathbf{y}$ are said to be perpendicular if $\mathbf{x} \cdot \mathbf{y}=0$. Show the following conditions hold whenever $\mathbf{x}, \mathbf{y} \in\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ are standard basis vectors. Then use linearity to obtain the general assertion.
(a) $y \times x=-x \times y$.
(b) $(\mathbf{x} \times \mathbf{y}) \cdot(\mathbf{z} \times \mathbf{w})=(\mathbf{x} \cdot \mathbf{z})(\mathbf{y} \cdot \mathbf{w})-(\mathbf{x} \cdot \mathbf{w})(\mathbf{y} \cdot \mathbf{z})$.
(c) $(\mathbf{x} \times \mathrm{y}) \times \mathrm{z}=(\mathrm{x} \cdot \mathrm{z}) \mathbf{y}-(\mathrm{y} \cdot \mathrm{z}) \mathrm{x}$.
(d) $\mathbf{x} \times \mathbf{y}$ is perpendicular to $\mathbf{x}$ and $\mathbf{y}$.

Problem 10 (Boas 3.8.5-6) A plane through the origin in $\mathbb{R}^{3}$ with normal $\mathbf{n}$ is given by

$$
P=\left\{\mathbf{v} \in \mathbb{R}^{3}: \mathbf{v} \cdot \mathbf{n}=0\right\} .
$$

Let $\mathbf{v}, \mathbf{w} \in P$ be two non-parallel vectors.
(a) If $\mathbf{x}$ is any vector in $P$, show $\mathbf{x}$ can be written uniquely as a linear combination

$$
\begin{equation*}
\mathbf{x}=a \mathbf{v}+b \mathbf{w} \tag{1}
\end{equation*}
$$

of $\mathbf{v}$ and $\mathbf{w}$. Hint: Take the cross product of both sides of (1) with $\mathbf{v}$ and then with $\mathbf{w}$ to solve for the coefficients $a$ and $b$.
(b) Look up and write down Cramer's rule for the solution of two linear equations in two unknowns $x_{1}$ and $x_{2}$ :

$$
\left\{\begin{aligned}
a_{11} x_{1}+a_{12} x_{2} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2} & =b_{2}
\end{aligned}\right.
$$

(c) Show that the coefficients $a$ and $b$ obtained in part (a) using the hint can be written as quotients of $2 \times 2$ determinants as in Cramer's rule. Hint: Take the dot products of both sides of (1) with $\mathbf{v}$ and $\mathbf{w}$.

