Assignment 4 Due Monday October 2, 2020

John McCuan

September 25, 2020

Problem 1 Describe all linear functions $L : \mathbb{C} \to \mathbb{C}$.

Problem 2 Say $L : \mathbb{R}^2 \to \mathbb{R}^1$ is a linear function with one-dimensional kernel spanned by a vector $\mathbf{v} \neq \mathbf{0}$. Let $\mathbf{w} \in \mathbb{R}^2 \setminus \ker L$.

(a) Show that every vector $\mathbf{x} \in \mathbb{R}^2$ can be written uniquely as

$$\mathbf{x} = a\mathbf{w} + b\mathbf{v},$$

i.e., $\{\mathbf{v}, \mathbf{w}\}$ *is a basis for* \mathbb{R}^2 .

(b) If $\mathbf{x} \in \mathbb{R}^2$ and

$$\mathbf{x} = a\mathbf{w} + b\mathbf{v} = c\mathbf{v}^{\perp} + d\mathbf{v}$$

where \mathbf{v}^{\perp} is the (counterclockwise) rotation by $\pi/2$ of \mathbf{v} , then what is the relation between a and b and c and d?

(c) If L is expressed in coordinates using the basis $\{\mathbf{v}^{\perp}, \mathbf{v}\}$ for the domain \mathbb{R}^2 and the basis $\{L\mathbf{w}\}$ for the codomain, then what is the matrix of L?

Problem 3 (Boas 3.14.4) Consider the vector space

$$P_2[x] = \{a_3x^3 + a_2x^2 + a_1x + a_0 : a_j \in \mathbb{R}, j = 0, 1, 2, \dots, 3\}$$

(over \mathbb{R}).

(a) Find a linear function $L_0: P_3[x] \to \mathbb{R}$ for which

$$\ker L_0 = \{a_3x^3 + a_2x^2 + a_1x : a_j \in \mathbb{R}, j = 1, 2, \dots, 3\}$$

Extra credit for giving a formula for $L_0[p]$ which does not involve the coefficient expression for p directly. Hint: Use evaluation of p.

- (b) Consider $L_1; P_3[x] \to \mathbb{R}$ by $L_1[p] = p''(0)$. What is ker L_1 ?
- (c) If $L_2: P_3[x] \to \mathbb{R}$ has

$$\dim\{L_2[p]: p \in P_3[x]\} = 2,$$

what is the dimension of the kernel of L_2 ?

Problem 4 Let $\alpha_1, \alpha_2 \in \mathbb{R} \setminus \{0\}$, and consider $L : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$L\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}\alpha_1x\\\alpha_2y\end{array}\right).$$

- (a) Find the eigenvalues and eigenvectors of L.
- (b) Show that

$$\left\{ L \left(\begin{array}{c} x \\ y \end{array} \right) : x^2 + y^2 = 1 \right\}$$

is an ellipse with semiaxes having lengths $|\alpha_1|$ and $|\alpha_2|$.

(c) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation of \mathbb{R}^2 by the angle $\theta = \pi/4$. Find the matrix A such that

$$T \circ L \left(\begin{array}{c} x \\ y \end{array} \right) = A \left(\begin{array}{c} x \\ y \end{array} \right).$$

(d) Find real numbers a, b, and c such that

$$\left\{T \circ L\left(\begin{array}{c} x\\ y\end{array}\right) : x^2 + y^2 = 1\right\} = \left\{\left(\begin{array}{c} x\\ y\end{array}\right) \in \mathbb{R}^2 : ax^2 + bxy + cy^2 = 1\right\}$$

Problem 5 (General Fact about linear functions) If $L: V \to W$ is linear and oneto-one, then ker $(L) = \{0_V\}$. **Problem 6** (linear automorphisms of a finite dimensional space) Consider a linear function $L : \mathbb{R}^n \to \mathbb{R}^n$. Show the following:

- (a) If L is one-to-one, then L is onto.
- (b) If L is onto, then L is one-to-one.

Problem 7 Consider

$$\frac{d}{dx}: P[x] \to P[x]$$

where P[x] denotes the vector space of polynomials with real coefficients (over \mathbb{R}). Show that d/dx is onto but not one-to-one.

Problem 8 Find an example of a linear function $L: V \to V$ which is one-to-one but not onto.

Problem 9 (products and geometry in \mathbb{R}^3) The cross product of two vectors

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

is defined by

$$\mathbf{x} \times \mathbf{y} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_2y_3 - x_3y_2 \\ -(x_1y_3 - x_3y_1) \\ x_1y_2 - x_2y_1 \end{pmatrix}.$$

Two vectors \mathbf{x} and \mathbf{y} are said to be **parallel** if $\mathbf{x} \times \mathbf{y} = \mathbf{0}$.

The dot product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ is defined by

$$\mathbf{x} \cdot \mathbf{y} = \sum_{j=1}^{3} x_j y_j.$$

Two vectors \mathbf{x} and \mathbf{y} are said to be **perpendicular** if $\mathbf{x} \cdot \mathbf{y} = 0$. Show the following conditions hold whenever $\mathbf{x}, \mathbf{y} \in {\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3}$ are standard basis vectors. Then use linearity to obtain the general assertion.

(a) $\mathbf{y} \times \mathbf{x} = -\mathbf{x} \times \mathbf{y}$.

- (b) $(\mathbf{x} \times \mathbf{y}) \cdot (\mathbf{z} \times \mathbf{w}) = (\mathbf{x} \cdot \mathbf{z})(\mathbf{y} \cdot \mathbf{w}) (\mathbf{x} \cdot \mathbf{w})(\mathbf{y} \cdot \mathbf{z}).$
- (c) $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} (\mathbf{y} \cdot \mathbf{z})\mathbf{x}$.
- (d) $\mathbf{x} \times \mathbf{y}$ is perpendicular to \mathbf{x} and \mathbf{y} .

Problem 10 (Boas 3.8.5-6) A plane through the origin in \mathbb{R}^3 with normal **n** is given by

$$P = \{ \mathbf{v} \in \mathbb{R}^3 : \mathbf{v} \cdot \mathbf{n} = 0 \}.$$

Let $\mathbf{v}, \mathbf{w} \in P$ be two non-parallel vectors.

(a) If \mathbf{x} is any vector in P, show \mathbf{x} can be written uniquely as a linear combination

$$\mathbf{x} = a\mathbf{v} + b\mathbf{w} \tag{1}$$

of \mathbf{v} and \mathbf{w} . Hint: Take the cross product of both sides of (1) with \mathbf{v} and then with \mathbf{w} to solve for the coefficients \mathbf{a} and \mathbf{b} .

 (b) Look up and write down Cramer's rule for the solution of two linear equations in two unknowns x1 and x2:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

(c) Show that the coefficients a and b obtained in part (a) using the hint can be written as quotients of 2 × 2 determinants as in Cramer's rule. Hint: Take the dot products of both sides of (1) with v and w.