Assignment 5
 Due Monday October 23, 2020

John McCuan

October 24, 2020

Problem 1 In Problem 5 of Exam 2 the linear function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
L\binom{x}{y}=\binom{2 x+2 y}{2 x-y}
$$

was considered, and in part (b)(v) you were asked to show that the points in the image $L\left(\partial B_{1}(\mathbf{0})\right)=\left\{L(x, y)^{T}: x^{2}+y^{2}=1\right\}$ satisfy an equation

$$
5 x^{2}-4 x y+8 y^{2}=36
$$

Consider a change of variables determined by

$$
\binom{x}{y}=\xi\binom{\cos \phi}{\sin \phi}+\eta\binom{-\sin \phi}{\cos \phi} .
$$

(a) Draw a picture illustrating this change of variables. (Boas' version of this picture is her Figure 11.2 of Chapter 3 Section 11 on page 151.)
(b) Write down the quadratic equation in the variables ξ and η with the coefficient of the middle $(\xi \eta)$ term in the form

$$
A \sin (2 \phi)+B \cos (2 \phi) .
$$

You'll need to use the double angle formulas

$$
\left\{\begin{aligned}
\cos (2 \phi) & =\cos ^{2} \phi-\sin ^{2} \phi \\
\sin (2 \phi) & =2 \cos \phi \sin \phi
\end{aligned}\right.
$$

(c) Find the unique angle $\phi \in(-\pi / 4, \pi / 4)$ for which the coefficient of $\xi \eta$ vanishes.
(d) Given your choice of ϕ from part (b), find the values of $\cos (2 \phi)$ and $\sin (2 \phi)$.
(e) Express the coefficients of ξ^{2} and η^{2} in terms of $\cos (2 \phi)$ and $\sin (2 \phi)$. You will probably want to use the identities

$$
\left\{\begin{aligned}
\cos ^{2} \phi & =\frac{1}{2}\left(\cos ^{2} \phi+1-\sin ^{2} \phi\right)=\frac{1}{2}(1+\cos (2 \phi)) \\
\sin ^{2} \phi & =\frac{1}{2}(1-\cos (2 \phi))
\end{aligned}\right.
$$

(f) Find an equation of the form

$$
\frac{\xi^{2}}{a^{2}}+\frac{\eta^{2}}{b^{2}}=1
$$

satisfied by the points in the image of the unit circle under L. (Find the lengths of the semi-axes a and b.)
(g) Why are the lengths of the semi-axes not the same as those of the ellipse in part (iv) of part (b) of Problem 2 on Exam 2?

Problem 2 Consider the standard linear shear $\Sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\Sigma\binom{x}{y}=\left(\begin{array}{cc}
1 & \tan \theta \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

(a) Draw a picture indicating the geometrical significance of the shear angle θ.
(b) Rotate coordinates as in the previous problem to find an equation of the form

$$
\frac{\xi^{2}}{a^{2}}+\frac{\eta^{2}}{b^{2}}=1
$$

satisfied by the points in the image of the unit circle under Σ. (Find the lengths a and b in terms of θ.)

Problem 3 The following presentation of some of the material from Chapater 7 of Boas is borrowed from the famous text An Introduction to Harmonic Analysis by Yitzhak Katznelson. Let \mathcal{P} denote the vector space of complex valued continuous periodic functions

$$
f: \mathbb{R} \rightarrow \mathbb{C}
$$

with period 2π. Let \mathcal{S} denote the vector space of double ended sequences of complex numbers

$$
\left\{a_{j}\right\}_{j=-\infty}^{\infty}=\left\{\ldots a_{-3}, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

Each double ended sequence is also a function $a: \mathbb{Z} \rightarrow \mathbb{C}$ where \mathbb{Z} denotes the integers and $a(j)=a_{j}$.

We will consider two important norms on \mathcal{P}. The first is the L^{1} norm given by

$$
\|f\|_{L^{1}}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)| d t
$$

The other is the L^{2} norm given by

$$
\|f\|_{L^{2}}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{2} d t\right)^{1 / 2}
$$

(a) Show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i j t} d t= \begin{cases}1 & \text { if } j=0 \\ 0 & \text { if } j \neq 0\end{cases}
$$

(b) Examples of functions in \mathcal{P} are the trigonometric polynomials $p: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
p(t)=\sum_{j=-k}^{k} a_{j} e^{i j t}
$$

The integers j are called the frequencies of p.
Show that the coefficients of a trigonometric polynomial satisfy (i.e., are given by)

$$
a_{j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} p(t) e^{-i j t} d t
$$

(c) Consider the Fourier (coefficient) transform $C: \mathcal{P} \rightarrow \mathcal{S}$ by

$$
C(f)=\hat{f} \quad \text { where } \quad \hat{f}(j)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i j t} d t
$$

(i) Show C is linear.
(ii) Show the Fourier transform of the complex conjugate of f satisfies the following:

$$
C(\bar{f})(j)=\overline{\hat{f}(-j)}
$$

This may be written equivalently as

$$
\widehat{\bar{f}}(j)=\overline{\hat{f}(-j)}
$$

(iii) If $T: \mathcal{P} \rightarrow \mathcal{P}$ by $T(f)(t)=f(t-\tau)$, then (show)

$$
C(T(f))(j)=\hat{f}(j) e^{-i j \tau}
$$

Equivalently,

$$
\widehat{T(f)}(j)=\hat{f}(j) e^{-i j \tau}
$$

The function T is called a translation operator.
(iv) Show

$$
|\hat{f}(j)| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)| d t=\|f\|_{L^{1}}
$$

Problem 4 Consider the ordinary differential equation

$$
\begin{equation*}
\frac{d u}{d x}=0 \tag{1}
\end{equation*}
$$

for a real valued function u defined on an interval (a, b) and having one continuous derivative. The vector space of continuously differentiable real valued functions is denoted by $C^{1}(a, b)$.
(a) Find all solutions of (1).
(b) How do you know you have all of them?
(c) Is the solution set

$$
\Sigma=\left\{u \in C^{1}(a, b): u^{\prime}=0\right\}
$$

a vector space? If so, what is the dimension?
Problem 5 (Boas 8.1.1) Verify that

$$
u(x)=a e^{-x}+b e^{x}
$$

and

$$
v(x)=a \cosh x+b \sinh x
$$

are solutions of the $O D E u^{\prime \prime}=u$ for any coefficients a and b.

Problem 6 (Boas 8.1.2) Solve the two point boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}=u \\
u(0)=0 \\
u(\ln 2)=3 / 4
\end{array}\right.
$$

Hint: Use the solutions of the form $v(x)=a \cosh x+b \sinh x$.
Problem 7 Consider the $O D E y^{\prime}(x)=f(x)$ for the function y where $f \in C^{0}(a, b)$.
(a) Find all solutions of the equation in $C^{1}(a, b)$. Think carefully about the limits of integration.
(b) Is the solution set for this equation a subspace of $C^{1}(a, b)$?

Problem 8 Find a single second order equation satisfied by each unknown function in the following system of first order equations:

$$
\left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-u
\end{array}\right.
$$

Problem 9 Verify that $u: \mathbb{R} \rightarrow \mathbb{C}$ by $u(t)=e^{i \omega t}$ and $v: \mathbb{R} \rightarrow \mathbb{C}$ by $v(t)=i \omega e^{i \omega t}$ satisfy the system

$$
\left\{\begin{array}{l}
u^{\prime}=v \\
v^{\prime}=-\omega^{2} u .
\end{array}\right.
$$

Problem 10 Given a positive real frequency ω, find all solutions $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}: \mathbb{R} \rightarrow$ \mathbb{C} of the system

$$
\mathbf{u}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right) \mathbf{u}
$$

Hint: Look at the two previous problems. Find another solution like the one in the previous problem and take a linear combination of those two.

