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Problem 1 In Problem 3 of Assignment 6, you were asked to find a function in
C∞

c (a, b). You might have found the following function which is sometimes referred
to as the standard bump function:

φ(x) =

{

e−1/(1−|x|2), |x| < 1
0, |x| ≥ 1.

You may note that φ : Rn → R and φ ∈ C∞
c (B1+ǫ(0)) for every ǫ > 0. This includes

φ ∈ C∞
c (−1 − ǫ, 1 + ǫ) for every ǫ > 0 when n = 1. Also in the case n = 1, setting

m = (a + b)/2 and r = (b − a)/2, the function ψ : R → R by ψ(x) = φ(2(x−m)/r)
gives an example in C∞

c (a, b).

(a) Make sure you understand the properties of φ. Use mathematical software to plot
the graph of φ. Prove that all derivatives of φ are well-defined and vanish on
the boundary of supp(φ).

(b) Given δ > 0, use φ to find an even nonnegative function µ ∈ C∞
c (R) with the

following properties

(i)
∫

µ =

∫

R

µ =

∫ ∞

−∞

µ(x) dx = 1.

(ii) supp(µ) = [−δ, δ].

Of course, what you have found is actually a one-parameter family of functions
depending on the parameter δ. Nevertheless, µ is called the standard mollifier
or an approximate identity.
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(c) Plot the graph of µ for δ = 1, 1/10, 1/100.

(d) Find
lim
δց0

µ(0).

Problem 2 Let µ be the standard mollifier and let u ∈ L1
loc(a, b) with −∞ < a < b <

∞. Given δ > 0, the mollification of u is µ ∗ u : (a+ δ, b− δ) → R by

µ ∗ u(x) =

∫

ξ∈(a,b)

µ(x− ξ)u(ξ). (1)

If you’re having trouble with the notation in the integral above, note that in the case
when u ∈ C0(a, b) the integral can be written as

µ ∗ u(x) =

∫ b

a

µ(x− ξ)u(ξ) dξ.

This is called a convolution integral. The convolution integral, and the mollification
in particular, has some remarkable properties.

(a) Show µ ∗ u ∈ C∞(a + δ, b − δ). Hint: Look at where the x dependence is in the
convolution integral. This will tell you what the derivative should be.

(b) Show

µ ∗ u(x) =

∫

ξ∈(a,b)

µ(ξ − x)u(ξ)

so that µ in the integrand is a copy of µ “recentered” at x. Let x be fixed and
draw a picture of the graph of µ(ξ − x) and the graph of a continuous function
u ∈ C0(a, b), both as functions of ξ, on the same set of axes near the point
x ∈ (a, b). Hint: You do not know u(x), but the values of u(ξ) for ξ near x are
close to u(x).

(c) Show the convolution is commutative, i.e., µ ∗ u = u ∗ µ.

(d) Given that u ∈ C0(a, b), find
lim
δց0

µ ∗ u(x).

Hint: This is why µ is called an approximate identity.
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Problem 3 In Problem 5 of Assignment 6 you were supposed to observe that the
weak formulation of an FTC equation y′ = f may be obtained as follows:

(i) Assume you have a classical solution u ∈ C1(a, b) and integrate both sides against
a test function φ ∈ C∞

c (a, b) like this:

∫ b

a

u′(x)φ(x) dx =

∫ b

a

f(x)φ(x) dx.

(ii) Integrate by parts on the left to obtain

−

∫ b

a

u(x)φ′(x) dx =

∫ b

a

f(x)φ(x) dx.

(iii) Notice that the condition

−

∫

(a,b)

uφ′ =

∫

(a,b)

fφ for all φ ∈ C∞
c (a, b) (2)

makes sense even when u and f are only in L1
loc(a, b) (and not even necessarily

continuous).

(iv) Finally, forget about the original form of the equation y′ = f , and take (2) to
be the definition of what it means to have a weak solution u ∈ L1

loc(a, b) of the
ODE u′ = f with f ∈ L1

loc(a, b).

Notice that the definition of a weak solution u ∈ L1
loc(a, b) of the FTC equation u′ =

f ∈ L1
loc(a, b) is also the definition of what it means for f to be the weak derivative of

u. (Surprise, surprise!)
You also had the opportunity to show g(x) = |x| is a weak solution of u′ = f

where f(x) = −h(−x) + h(x) and h is the standard Heaviside function. Let µ be the
standard mollifier.

(a) Determine explicitly and plot µ ∗ g.

(b) Determine explicitly and plot µ ∗ f where f(x) = −h(−x) + h(x) as above.

(c) Show
(µ ∗ g)′ = µ ∗ f classically.
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(d) Formulate a conjecture concerning the mollification of a weak solution u ∈ L1
loc(a, b)

of the ODE u′ = f ∈ L1
loc(a, b). Hint: What ODE does µ ∗ u solve classically?

Be careful about the domain of definition for the functions in your conjecture;
remember that in parts (a) and (b) above we had g, h ∈ L1

loc(R). Can you prove
your conjecture?
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Autonomous ODE

An ODE is autonomous if it has the form

x′ = F(x).

There are two main “spaces” associated with an autonomous ODE: phase space and
solution space. Usually phase space is of more interest; this is the Euclidean space
R

n which may be taken as the co-domain of solutions x : (a, b) → R
n. In the case

n = 1 under consideration in the first part of our discussion of ODEs, we can write

x′ = f(x)

and take phase space to be the phase line R
1. To draw a phase diagram usually

involves several steps and may involve a multitude of steps including plotting the
images of solutions using mathematical software. The basic objective, however, is to
understand the orbit structure of the autonomous equation. An orbit is a subset
of phase space: The orbit of the point x0 determined by the ODE x′ = F(x) is

O(x0) = {x(t) : t ∈ (a, b)}

where (a, b) is the domain of x and x is the (hopefully unique) solution of the IVP

{

x′ = F(x)
x(0) = x0.

Notice it is assumed here that t ∈ (a, b). An orbit is usually drawn in phase space by
drawing orbits which are curves and putting arrows on them. The glaring exception is
the plotting of equilibrium points, which are not curves but only points. The two steps
always involved in drawing a phase diagram are (1) finding and plotting equilibrium
points and (2) plotting representative orbits indicating the overall orbit structure.
Other important steps may be the plotting of null-clines and separatrices as well
as ω-limit sets. The following problems will lead you through plotting some phase
diagrams.

Solution space for an ODE, on the other hand, is a cross product of the domain
(an interval) of solutions x with the co-domain of x. Solution space is, in principle,
of interest for any ODE, but since the domain of different solutions of the same
ODE may be different intervals (and for other reasons) solution space may be more
complicated.
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Problem 4 An ODE is linear if it has the form L(x) = v(t) where L is a linear or-
dinary differential operator and v is a given function of the independent variable
t called the inhomogeneity or forcing function. If v ≡ 0, then the linear ODE
is said to be homogeneous. Associated with every linear ODE is, as you know, an
associated homogeneous ODE.

Linear ODEs are usually not autonomous. Under what conditions is the linear
first order (single) ODE Lx = f autonomous? To be an autonomous first order
ODE in this context means L : C1(R) → C0(R) depends only on x and x′. Thus,
you may assume L can be written in the form

Lx = G(x′, x)

where G : R2 → R. Hint: Show G is linear.

Problem 5 Assume u ∈ C1(R) by

u(x) =

{

−x2, x ≤ 0
x2, x ≥ 0

is a solution of the autonomous ODE y′ = f(y).

(a) Solve the IVP
{

y′ = f(y)
y(0) = 5.

(b) Plot all solutions of y′ = f(y) in solution space. (Be careful!)

Problem 6 Every autonomous equation is separable, and every separable equation
can be solved (at least implicitly). It is often the case that the information one desires
about an autonomous equation can be obtained without solving the equation, but this
problem asks you to solve a well-know autonomous equation. The logistic equation
used to model population dynamics is given by

P ′ = αP (K − P )

where K is a particular population called the carrying capacity and αK > 0 is a
nominal growth constant.

(a) Divide both sides of the logistic equation by P (K − P ) and integrate from time
t = 0 to time t.
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(b) Change variables on the left using ξ = P (t) and then integrate using partial
fractions in ξ. (Be careful to change the limits of integration when you change
variables.)

(c) Solve for P = P (t), and calculate the limit

lim
t→∞

P (t).

(d) Draw the phase line diagram associated with the logistic equation and prove,
using the existence and uniqueness theorem, that the value of the limit you have
obtained is correct.

In general, an ODE is said to be separable if it has the form g(x)x′ = q(t).

Problem 7 In the special case in which all solutions of a given ODE are defined and
unique for all real times t ∈ R, the set of solutions is called a dynamical system.

(a) Show that if two orbits in a dynamical system intersect, then they are the same
orbit.

(b) If O(x0) = {x(t) : x′ = F(x)} is an orbit of a dynamical system and there is
some t0 ∈ R and some p > 0 for which x(t0) = x(t0 + p), then x is said to be
periodic with period p and O(x0) is said to be a periodic orbit. Show that
x(t) = x(t + p) for every t ∈ R when O(x0) is a periodic orbit.

(c) Given a periodic orbit O(x0) = {x(t) : x′ = F(x)} of a dynamical system, show
that if O(x0) = {y(t) : y′ = F(y)}, then x and y have the same set of periods,
i.e.,

{p ∈ (0,∞) : x(t + p) = x(t)} = {p ∈ (0,∞) : y(t+ p) = y(t)}.

Thus, it makes sense to talk about the period of an orbit.

(c) Given a periodic orbit O(x0) = {x(t) : x′ = F(x)} of a dynamical system,
consider

p0 = inf{p ∈ (0,∞) : p is a period of O(x0)}.

Show that if p0 > 0, then p0 is a period for O(x0). Hint: Take a solution
generating the orbit, and use continuity.

(d) What can you say if p0 = 0?

Problem 8 Can there be a periodic orbit of a one-dimensional dynamical system,
i.e., a dynamical system associated with a single autonomous ODE, with a positive
period? Why or why not?
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Problem 9 (Boas 2.16, 7.5.1, and 8.2.20) Resistors, capacitors, and inductors (coils)
are electronic components with which are associated values of resistance (R), capaci-
tance (C), and inductance (L) respectively. Charge q is assumed to move at a uniform
rate through a circuit, and this rate is called current:

I =
dq

dt
.

The component rules relating voltage (potential difference) and charge are the follow-
ing

(i) The voltage drop across a resistor of value R is

VR = IR

where I is the current in the circuit.

(ii) The voltage drop across a capacitor of value C is proportional to the charge
(difference) accumulated on the plates

q = CVC .

In particular, if you know the voltage across a capacitor (as a function of time),
you can determine the current in the circuit:

I = C
dVC
dt

.

(iii) The voltage drop across a coil of inductance L is given by

VL = L
dI

dt
.

(a) A circuit consists of a resistor, a capacitor, and a switch (in series in a loop). At
time t = 0, with accumulated charge q0 on the capacitor, the switch is thrown
closed. Write down and solve an ODE for the charge accumulated on the ca-
pacitor as a function of time. Hint: You can use equation (1.2) on page 391 of
Boas with supply voltage V ≡ 0 (after the switch is thrown) and L = 0.

(b) A circuit consists of a resistor, a coil attached end to end. At time t = 0 a
magnet makes a one-time pass through the coil inducing an initial current I0 in
the circuit. Write down and solve an ODE for the current in the circuit as a
function of time.
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(c) A resistor, capacitor, and coil are in a circuit with a power supply. Equation
(1.2) then becomes a second order linear equation for the charge:

L
d2q

dt2
+R

dq

dt
+

1

C
q = V. (3)

(i) Find a particular solution of equation (3) of the form q(t) = q0 (constant)
when V ≡ v0 is a constant.

(ii) Find a particular solution of equation (3) of the form q(t) = a cos(jt) +
b sin(jt) when V (t) = sin(jt).

(d) Say we want to find a particular solution of equation (3) when

V (t) =
∞
∑

j=−∞

h(t− (2j − 1)π)− h(t− 2jπ)

where h is the standard heaviside function. Note that there is no classical so-
lution of this ODE in C2(R). The function g(t) = V (t) − 1/2, however, is an
odd 2π periodic function. Therefore, it is possible to write

V (t) =
1

2
+

∞
∑

j=1

vj sin(jt) (4)

and use part (c) to find a series solution of the form

q(t) = q0 +

∞
∑

j=1

[aj cos(jt) + bj sin(jt)]. (5)

(i) Plot V (t) given in terms of the Heaviside function.

(ii) Integrate both sides of (4) from t = −π to t = π to find the coefficients vj.
Hint: Remember Problem 10 on Exam 2.

(iii) Use mathematical software to plot the first few terms of the Fourier series
for V .

(iv) Use part (c) to determine the coefficients q0, aj and bj for j = 1, 2, 3, . . ..
Hint: Pair up the terms in the series (4) with particular solutions in the
series (5).

(v) Plot the first few terms in the series for your particular (weak) solution.
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Problem 10 Consider the coupled system of logistic equations

{

x′ = x(1− x+ y/2)
y′ = y(5/2− 3y/2 + x/4).

(a) Writing x = (x, y)T so that this system has the form x′ = F(x), identify the
vector function F = (f1, f2)

T .

(b) Find the equilibrium points for this system.

(c) Evaluate the matrix

DF =











∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y











at each equilibrium point.

(d) Use mathematical software to plot the vector field F near each equilibrium point
x∗ and the vector field given by

v(x) = DF(x∗)x.
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