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1 Preliminaries/Prerequisites

The most important foundational concept required in the material below is that of a
function. You really need to know and be familiar with the notion of a function from
one set to another. Presumably, we don’t need any discussion of sets to get started,
but you should note that whenever you want to talk about a function, you need to
have two sets in mind; these sets are the domain of the function and the co-domain
or set of values of the function. By set of values we can mean two different things
(which are closely related). As a start, let us simply take the co-domain to be some
set in which the values of the function are a subset. The precise set of values taken
by the function is called the range. The range is also properly described as the set
of values of the function.

While we do not need to talk about sets, some notation for sets might merit some
review. You can find the “curly bracket notation” for sets, or more properly the
descriptive notation for sets, described in any reasonable calculus textbook (or
book on set theory). An example should be adequate. IfX is the domain of a function
f and Y is the codomain of the function, or the set in which f takes its values, then
we can specify the range using descriptive notation by

R = {y ∈ Y : y = f(x) for some x ∈ X}.

Briefly: The curly brackets are starting and ending symbols for the description of
the set R. The specificiation to the left of the colon offers a name for the elements,
i.e., a general element, in the set to be described. Properly, a universe for the set
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being described should be given. In this case, the universe is Y , but sometimes the
specification of the universe is omitted:

R = {y : y = f(x) for some x ∈ X}. (1)

As an aside, while not explicitly specifying a universe (which is a set) is okay, not
having a universe which is a set can cause logical trouble. That is to say, the set of
all sets, or

{S : S is a set}

is not a set. As I wrote above, hopefully, we don’t need to get into a discussion of
sets, but for those who might be interested, you can think about this:

Exercise 1 Letting A = {S : S is a set}, consider the descriptive specification

B = {S ∈ A : S /∈ S}.

Can you determine if B is an element of B, i.e., is the statement B ∈ B true, or is
the statement B /∈ B true?

Returning to our discussion of the specified set R, the specification to the right of
the colon is, perhaps, the most important thing to understand. This should be some
kind of sentence which allows you to determine whether any particular element (of
any set) is an element of the particular set being described, in this case the set R.
The whole thing written in (1) is read:

R is the set of elements y in Y such that y = f(x) for some x ∈ X.

An alternative to the descriptive notation is the list notation which also uses curly
brackets:

C = {0, 1, 2, 7} Z = {0,±1,±2,±3, . . .}.

The first of these is read

C is the set consisting of the elements 0, 1, 2, and 7.

In this case, the universe can be, for example the set of integers Z, which is specified
as the set Z containing 0, ±1, ±2, ±3, and so on. These sets also need universes,
which we have not been careful to specify.
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Exercise 2 In set theory, one starts with an axiom (the Axiom of Existence) as-
serting the existence of some set and then proves, using descriptive specification, the
existence of a special set called the empty set φ containing no elements. Can you
prove the existence of the empty set and build from that a suitable universe for the
integers? (Caution: You will need the Axiom of Unions which states that if you
have “two” sets A and B, then there exists a “third” set containing these “two” sets
A and B as elements. The words “two” and “third” are in quotes here because at this
stage in the construction of the integers using sets, one can not assume there is any
such thing as 2 or 3. This exercise may well be beyond/below what you want to spend
time on.)

Let’s say that’s enough on set notation and move on to functions.
Say you have a domain X and co-domain Y . Informally, a function f : X → Y ,

read f is a function from X to Y , is a rule or correspondence which assigns
to each x ∈ X a unique y ∈ Y . This is the important abstract concept you need
to understand (fully). The reason it is informal, is because the words “rule” and
“correspondence” have not been carefully defined. The formal definition is something
like this:

Start with the Axiom of Products which states that given two sets X
and Y , there exists a third set P = X×Y consisting of all ordered pairs
(x, y) such that x ∈ X and y ∈ Y . That seems reasonable enough.

A relation is any subset of the product X × Y .

A function F is a relation with the property that for each x ∈ X

{y ∈ Y : (x, y) ∈ F}

consists of exactly one element.

Exercise 3 Writing y = f(x) whenever (x, y) ∈ F (and F is a function with domain
X and range contained in Y ), convince yourself that the informal definition of a
function and the formal one are equivalent.

Incidentally, the definition of a function I have just given you seems to have been first
precisely understood by Leonhard Euler in the early eighteenth century. I mention
this simply to emphasize the fact that it took a long time for any human to understand
precisely the concept of a function, though probably many humans had understood it
intuitively (albeit imprecisely) long before that. You have probably had an intuitive,
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though imprecise, understanding of the notion of a function for a long time, and now
you need to understand that notion precisely.

As a last preliminary/prerequisite you should know about and be (somewhat)
familiar with the set of real numbers R. In particular, you should have in your
mind the geometric interpretation of this set as a line with no gaps and be able to
talk about, understand, and competently use limits of real numbers with relative
ease.

2 Complex Numbers

A complex number is often denoted by the letter z, and we write z = x + iy or
z = a+ bi where a, b, x and y are real numbers. Say x, y ∈ R and z = x+ iy. Then
we can write

x = Re(z) (the real part of z)

and

y = Im(z) (the imaginary part of z).

Recall that the real line R (or the real numbers) are pictured as a line. Similarly, the
set of complex numbers C is pictured as a plane with the complex number z = x+ iy
having coordinates x and y, or more properly horizontal coordinate x in the real line
(x-axis) as usual and vertical coordinate iy in the imaginary axis:

Figure 1: A complex number in the complex plane

Associated with each complex number z = x+ iy there is a modulus defined by

r = |z| =
√

x2 + y2. (2)

4



The modulus is also called the polar radius of z, and it should be obvious why that
is the case.1 If the complex number z = x + iy is nonzero, then one can also assign
to z an argument

θ = Arg(z) (3)

which is an angle determined up to an additive integer multiple of 2π:

θ = Arg(z) + 2πk, k = 0,±1,±2,±3, . . .

It should be noted that the polar radius in (2) is given in terms of an explicit formula
in terms of x and y while the argument in (3) is not. Here is an exercise that may be
helpful as motivation for the material covered below.

Exercise 4 Try to express the argument Arg(z) in terms of z = x+ iy.

3 The complex tangent function

A first attempt at giving a formula for Arg(z) might look like this:

Arg(z) = tan−1
(y

x

)

. (4)

And what one would probably mean by “tan−1” here is the function whose graph is
illustrated in Figure 2. This function is sometimes called the principal arctangent
function and is also denoted by “arctan” or “Tan−1.” It will be noted that there
could be other choices for the inverse tangent as illustrated in Figure 3. These other
choices are referred to as different branches of the inverse tangent function. The
terminology derives from complex analysis which offers a unified framework in which
these different real branches of the inverse tangent are tied together in a useful and
beautiful manner. Probably most of you are not too familiar with this framework of
complex function theory, so we are going to take some time to go through it carefully.
That will be the main objective for the rest of this lecture, and the first step is
to understand the extension of the real valued tangent function as a function of a
complex variable.

You may also think of the following discussion being motivated by the following
idea: The real arctangent function is useful in writing down a formula for the argument
of a complex number sometimes, so perhaps the complex tangent (and the complex

1This might be a good time to do Problem 1.
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Figure 2: The real tangent function and the principal inverse tangent.

Figure 3: Other real inverse tangent functions.

inverse tangent) can be used to write down a formula for the argument of a complex
number z in a more general way.

Before we discuss the value of tan z where z = x + iy ∈ C, let’s note the short-
coming of the formula given in (4) and see one solution of Exercise 4. In fact, if
Re(z) = x > 0, then our interpretation of tan−1(y/x) as the principal inverse tangent
gives the correct value of Arg(z). But the principal arctangent, as we know, can only
give values strictly between −π/2 and π/2. Therefore, the formula in (4) gives an
incorrect answer when Re(z) = x < 0 and gives no answer at all when Re(z) = 0. A

6



correct answer to the exercise might be

Arg(z) =















arctan(y/x), Re(z) > 0
±π/2, Re(z) = 0, ± Im(z) > 0
arctan(y/x)± π, Re(z) < 0
undefined, z = 0.

It is difficult to get away from the nominal unpleasantness of having to use cases to
give this formula. On the other hand, the different branches of the inverse tangent
can also be somewhat more systematically organized as follows: Note that the vertical
asymptotes at θ = π/2+kπ for k = 0,±1,±2,±3, . . . divide the real line into intervals
Ik as indicated in Figure 4. For each k, furthermore, we may set tan−1

k θ = tan−1
0 θ+kπ

where tan−1
0 denotes the principal arctangent. Then our formula may be written in

Figure 4: The real tangent function and the real branches of inverse tangent.

a somewhat more organized manner as

Arg(z) =















tan−1
0 (y/x), Re(z) > 0

±π/2, Re(z) = 0, ± Im(z) > 0
tan−1

1 (y/x), Re(z) < 0
undefined, z = 0.

Finally, let us turn to the complex tangent, and see if we can connect these real
branches of the inverse tangent. Not surprisingly, a natural approach to finding the
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value of tan z = tan(x+ iy) where x and y are real is to start with

tan z =
sin z

cos z

where

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
. (5)

If these formulas are not familiar to you, then note them for now (maybe even mem-
orize them for now) and we will come back to them. These definitions are given in
terms of complex exponentials which can be computed without too much trouble.
For example,

eiz = ei(x+iy) = e−y+ix = e−y(cosx+ i sin x). (6)

Before we go on, let’s think a little bit about what happened here. For any complex
number z = x+ iy, we can define the complex exponential as a series:

ez =
∞
∑

j=0

zj

j!
. (7)

This should be familiar, at least in the case when z = x ∈ R is real. Also in the
complex case, there is a relatively simple theory of convergence of such series, and
because the factorials in the denominators grow so quickly with j, the series will
always converge to a well-defined complex number for any z ∈ C. For those who
want to know precisely what this means, it means the following:

There exists a unique complex number w such that for any positive (real)
number ǫ, there is some positive integer N for which

∣

∣

∣

∣

∣

w −
k

∑

j=0

zj

j!

∣

∣

∣

∣

∣

< ǫ whenever k > N .

We call the number w the value of the infinite series and, in this case, we write
w = ez. In any case, we can use (7) as a starting point for consideration of the complex
exponential ez, and the rest follows from that. For example, if we take z = ix to be
purely imaginary, then

eix =

∞
∑

j=0

(ix)j

j!
=

∞
∑

ℓ=0

(ix)2ℓ

(2ℓ)!
+

∞
∑

ℓ=0

(ix)2ℓ+1

(2ℓ+ 1)!
.
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Here we have just broken the sum up into the terms with even indices and the terms
with odd indices. Noting that

(ix)2ℓ = (i2)ℓx2ℓ = (−1)ℓx2ℓ and (ix)2ℓ+1 = i(−1)ℓx2ℓ+1,

we get

eix =
∞
∑

ℓ=0

(−1)ℓx2ℓ

(2ℓ)!
+ i

∞
∑

ℓ=0

(−1)ℓx2ℓ+1

(2ℓ+ 1)!

= cosx+ i sin x.

This result is worth noting; it is called Euler’s formula:

eix = cosx+ i sin x, x ∈ R. (8)

We used Euler’s formula above2 to see that

eiz = e−y(cosx+ i sin x).

It follows similarly that

e−iz = ey−ix = ey(cos x− i sin x).

Therefore,

sin z =
eiz − e−iz

2i

=
1

2i
[e−y(cosx+ i sin x)− ey(cosx− i sin x)]

=
1

2i
[(e−y − ey) cosx+ i(e−y + ey) sin x

= sin x cosh y + i cosx sinh y.

In Problem 5 you are asked to make a similar calculation to obtain

cos z = cosx cosh y − i sin x sinh y.

If you are not familiar with the hyperbolic cosine and hyperbolic sine functions,
Problem 6 should be of interest.

2This is a good time to do Problem 3 and Problem 4.
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Using our expressions for cos z and sin z, we have

tan z =
sin x cosh y + i cosx sinh y

cosx cosh y − i sin x sinh y
=

cosx sin x+ i cosh y sinh y

cos2 x cosh2 y + sin2 x sinh2 y
.

I’ve used here the identities cos2 x+ sin2 x = 1 and cosh2 y − sinh2 y = 1.
Now, here is an important point you need to understand: The function tan, as we

have expressed its values, is a function with domain C and co-domain C. That means
we have a mapping from one plane to another, and we want to understand how
that mapping works. So, you need to start picturing in your mind two planes, one as
the domain of the complex tangent function and the other where that function takes
its values. See Figure 5.

Figure 5: The domain and co-domain of the complex tangent function.

The way this mapping works is determined by the real and imaginary parts of the
image. These are two (real valued) functions of two real variables. Writing z = x+ iy
as above and w = tan z = ξ + iη, we have

ξ(x, y) = Rew =
cosx sin x

cos2 x cosh2 y + sin2 x sinh2 y

and

η(x, y) = Imw =
cosh y sinh y

cos2 x cosh2 y + sin2 x sinh2 y
.
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As a first step toward understanding the map, we can recover what we know about
the real tangent function. Taking y = 0, so that z = x+ iy = x is real, we get

ξ(x, 0) = tanx and η(x, 0) = 0.

That is the image point tan z = ξ(x, 0) + iη(x, 0) = tan x ∈ R corresponds to the
point with coordinates (tanx, 0) ∼ tanx + 0i in the plane. You should see this in
Figure 5 where we have shaded

{x ∈ R : 0 ≤ x < π/2} ⊂ C

in the domain on the left and (the visible part of)

{ξ ∈ R : ξ ≥ 0} = the positive real axis

in the codomain. In fact, you should see clearly how the complex tangent mapping
behaves when restricted to the real interval −π/2 < x < π/2. We know, furthermore,
that this behavior will repeat on every interval of length π starting at any point
−π/2 + πk for k and integer. Let me suggest that you pause here for a moment
and consider carefully the representation of the values of tan x illustrated by the
(real) graph in Figure 2 as they appear in Figure 5. In particular, you should see
an expansion in Figure 5 in which the interval −π/2 < x < π/2 is stretched and
stretched so drastically that the points x = ±π/2 correspond to ∞ in the complex
plane. This expansion to infinity is represented by the vertical asymptotes in Figure 2,
and I think it’s important for you to understand what is happening here fully before
you continue.

As a second step, I suggest considering the restriction of tan z to the imaginary
axis. This means we’ll take z = x + iy = iy with x = 0. Computing the values of ξ
and η, we find

tan(yi) = i tanh y. (9)

The hyperbolic tangent is an interesting function. It is very different from the real
tangent. You might use numerical software if you are not familiar with this function
to see that it’s graph resembles that of the principal arctangent illustrated in Figure 2.
Instead of the asymptotic values ±π/2 at ±∞, however, tanh tends to ±1. The result
is that along the imaginary axis the complex tangent mapping is a compression or
contraction. The compression furthermore is so radical that the entire imaginary
axis is compressed into the finite interval between −i and +i with −∞i mapping to
−i and +∞i mapping to i. What we have described is telling us something new and
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important about the tangent function which one does not know if one only knows the
real tangent function. This compression for purely imaginary arguments (and values)
is inherent to the complex tangent function.

If you see clearly the behavior we have described on the axes within the vertical
strip

(−π/2, π/2)× iR = {x+ iy : −π/2 < x < π/2}

then picture both together: A large stretching along the real axis taking (−π/2, π/2)
to the entire real line and a contraction of the entire imaginary axis to the interval
between −i and i. Now, you should ask yourself what happens in the rest of the the
complex plane, i.e., what does tan do with the rest of C? As a first step to under-
standing the answer to that question we can start with points in the first quadrant
or at least the portion of the strip in the first quadrant. Maybe we could consider
the line π/2 + yi for y > 0. In view of the singularity at z = π/2 one might expect
singular behavior. That, however does not turn out to be the case:

tan(π/2 + iy) = i coth y.

The hyperbolic cotangent given by coth y = cosh y/ sinh y does indeed have a sin-
gularity at y = 0, but we are looking now at y > 0. Thus, something interesting
happens. The half line {π/2 + iy : y > 0} is mapped to the ray {iη : η > 1} on the
imaginary axis with a reverse orientation. That is, ∞ at the top end of the half
line maps to i and the starting point π/2 on the real axis maps to ∞.

Now I’m going to suggest something which may not be obvious. I suggest we
break the strip up into vertical and horizontal lines. As an example, let’s take a
horizontal line segment {x+ iy : 0 ≤ x < π/2} with y > 0 fixed. If we plot the image
of this segment with mathematical software (like Mathematica) we see something like
Figure 6.

In the picture it looks like the point ξ + iη for x + iy in the horizontal segment
{x+ iy : 0 ≤ x < π/2} lies on a circle with center on the imaginary axis. In fact, we
can check directly that

tan(yi) = i tanh y and tan(π/2 + yi) = i coth y.

Notice that these pure imaginary numbers will both have positive imaginary parts.
This means that if our guess (based on the picture) is correct, then the center should
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Figure 6: A carefully chosen subdomain of the complex tangent function and its
image.

be at the point with imaginary part the average

tanh y + coth y

2
=

1

2

(

sinh y

cosh y
+

cosh y

sinh y

)

=
cosh2 y + sinh2 y

2 cosh y sinh y
.

That is, the center should be

c =
cosh2 y + sinh2 y

2 cosh y sinh y
i.

We can also calculate the guessed radius:

r =
1

2

(

cosh y

sinh y
−

sinh y

cosh y

)

=
1

2 cosh y sinh y

= csch(2y).
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In fact, this guess is correct. If you understand this assertion, you can get a pretty
good idea of how the complex tangent function works. To strengthen and expand your
understanding, Problem 8 below and contemplation of Figure 7 should be helpful.

Figure 7: Another particular subdomain of the complex tangent function and its
image. The domain here is the rectangle [0, π/2− 0.1]× [0.01, 1]. The image is called
a conformal rectangle. The sides of the conformal image are not straight lines.

Exercise 5 Make plots of the domain and image for various rectangles like that
shown in Figure 7. In particular, note what happens when the interval for the imagi-
nary part is [0, 1] instead of [0.01, 1]. Why did I choose 0.01 as the lower limit?

You should come to the conclusion that the strip

Σ = {x+ iy : −π/2 ≤ x ≤ π/2}\ ({−π/2 + yi : y ≥ 0} ∪ {π/2 + yi : y ≤ 0}) ,

which we have modified by removing certain selected boundary portions, maps in a
one-to-one manner exactly onto the entire complex plane with the exception of the
points ±i. Let that sink in. This means there is a well-defined inverse function

tan−1 : C\{±i} → Σ.

Notice how this function contains the real values of the real principal arctangent
tan−1

0 , but this function contains a tremendous amount of additional information.
We can also, relatively easily see how this function extends to other branches, but to
properly understand that, we need a new structure.
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4 Riemann Surfaces

Were we to imagine a point moving in the domain of the complex inverse tangent
function discussed above and passing from the first quadrant to the second across
imaginary axis above the singular value i we know the image crosses the boundary of
the strip Σ along the vertical segment

A = {π/2 + yi : y > 0}.

In contrast, if our point approaches (and crosses) the same segment from the opposite
side in the second quadrant, then the image crosses the quite different vertical segment
B = {−π/2+yi : y > 0}. In both cases, we can see, more or less, how the extension of
the inverse tangent function should work. To be very specific, if we continue moving
on one of the circular arcs centered on the imaginary axis and pictured on the right
in Figure 6, then when the point returns to the imaginary axis at a point η1i lying
between 0 and i, i.e., with positive imaginary part η1. The image of the point ηii
(under the inverse tangent) will lie at a point with positive imaginary part and real
part π. To convince yourself this is the case, you might calculate tan(π + yi).

Admittedly, this should be a little disturbing to you. The reason this should be
disturbing is because we have already discussed the behavior of the complex tangent
function on a purely imaginary argument yi.

Exercise 6 Given a purely imaginary value η1i with 0 < η1 < 1, find a purely imag-
inary number yi such that tan(yi) = η1i. Hint: Look at (9).

These apparent contradictory observations should be made clear in just a moment.
Let us, however, continue our journey constructing the inverse tangent (without the
proper Riemann surface) a little further.

Let our same point (tied to its image under tan−1) move down the imaginary axis
from ηii to the symmetric (conjugate) point −η1i. You can check directly that the
image under tan−1 will move to a symmetric (conjugate) point on the line Re z = π.
Then moving on the symmetric circular arc in the third quadrant, the image under
tan−1 will arrive back to the line Re z = π/2 at a point with negative imaginary
part. From there, as we cross the imaginary axis again, from the third to the fourth
quadrant, and return to familiar territory with image in the strip Σ.

We have taken a curious journey, evidently out of the pictured domain of tan−1

on the right of Figure 6 and then back in again. But where did we go? The key is
to construct the proper domain for the inverse tangent. Each strip, roughly deter-
mined by the condition −π/2 + πk < Re z < π/2 + πk for k ∈ Z maps under the
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tangent function to a copy of the complex plane C. Thus, the image of the com-
plex tangent is infinitely many copies of the complex plane with two very important
qualifications/modifications.

First, each copy of the complex plane has two points omitted. These points are
±i. And second, these copies are “sewn together” is a precise manner to produce
something that looks rather like a surface, but not quite like a surface you are very
used to seeing. The standard way to describe this sewing of the copies is to imagine
a branch cut extending along the imaginary axis from i to +∞i and another from
−i to −∞i. The points ±i are called branch points. Along each branch cut, we
specify one edge to be “in” the copy, and the other to be “out” of the copy. If you
look carefully at Figure 6 you should be able to see that I’ve indicated one edge of
each branch cut as being “in” by drawing it with a solid line, and the opposite edge
is designated as “out” because it is dashed.

A little more terminology and an identification associated with Figure 6 may
be helpful. Each strip, for example the strip Σ0 = Σ shown in Figure 6 is called
a fundamental domain for the tangent. The image of a fundamental domain,
sometimes called a fundamental region on the Riemann surface is something like
a full copy of the complex plane. More precisely, the fundamental region is a copy
of the complex plane with some branch points and branch cuts. Let us denote the
fundamental domain associated with the strip −π/2 + πk ≤ Re z ≤ π/2 + πk by the
symbol Σk. These regions are shown on the left in Figure 6. Now, the image of Σk

in the complex plane C is shown on the right in Figure 6. When we construct the
Riemann surface, however, we take a different fundamental region for each strip Σk.
Let us denote the fundamental region (in the Riemann surface) associated with Σk

by Rk. Then you should interpret Figure 6 as only showing the fundamental region
R0 on the right. In Figure 8 we have two fundamental regions R0 and R1 shown.

Exercise 7 The edges of the branch cuts in R1 with arrows on the right in Figure 8
could be labeled as “sewn to R0 (first quadrant)” (red) and “sewn to R0 (fourth
quadrant)” (orange). Can you correctly label the two black edges of the branch cuts
in R1?

As a final effort to illustrate the Riemann surface, I’m going to bend and stretch
the fundamental regions a little bit (and show how the fundamental regions are sewn
together). You should be able to see in Figure 8 why Riemann surfaces are often
said to have a “parking deck structure.” One aspect which is rather distorted in this
illustration (and rather difficult to illustrate accurately in general) is the fact that we
now have two vertical lines over the branch points ±i. In the Riemann surface, these
branch points constitute only two, and exactly two, points.

16



Figure 8: Two fundamental regionsR0 andR1 in the Riemann surface for the complex
tangent function. It would be somewhat better to envision R1 as a copy of C (with
branch cuts) above R0, but this arrangement does not fit nicely on the page in a
figure. One should envision, however, infinitely many fundamental regions . . .R−2,
R−1, R0, R1, R2, . . . stacked one above another in a column (and all sewn together).

As something of an aside, this Riemann surface for tangent has the particular prop-
erty that it can be realized as in Figure 9 (or even more elegantly on the Wikipedia
page for “inverse trigonometric functions”) as an embedded surface in R3. Though
the same thing is true for the logarithm/exponential, many Riemann surfaces do not
have this property. For example, the Riemann surface for the square root function
cannot be embedded in R3. Furthermore, the Riemann surface R we are considering
here is more interesting than the Riemann surface for the logarithm, and R has a
form which has a relatively common application. If you visit the Centergy parking
deck at the corner of Williams Street and Ambercrombie (which you can drive around
in for ten minutes or so for free) you’ll see that it has precisely the form of R. And
yet, if you search on the internet for images, the nice one for the tangent function on
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Figure 9: On the left, I have taken a copy of the fundamental region R0 and twisted
up the regions around each edge of the branch cuts that are sewn to R1. I have
also twisted down the regions around the edges of the branch cuts that are sewn to
R−1 and colored these twisted regions according to the coloring of the branch cuts
in Figure 6. In the middle, I’ve added a portion of the fundamental region R1 with
twisted branch cuts descending toR0, and I’ve colored them with colors corresponding
to the sewing. Notice how the fundamental regions are stacked. On the right, I’ve
simply lowered the portion of R1 to meet R0 along the ascending branch cuts.

the Wikipedia page is well down the list.

5 Mathematical Software, Proper Implementation,

the Complex Arctangent and its restrictions

I hope you have a picture of the Riemann surface

R = ∪k∈ZRk

associated with the complex tangent firmly (or more or less firmly) in your mind.
(Remember how functions work.) The Riemann surface R is the natural domain of
the complex arctangent:

tan−1 : R → C.

We can now extend and refine our notion of branches of the inverse tangent in a
unified manner. Take the principal arctangent to be the complex valued function
defined on R0 the central fundamental region of our Riemann surface R. Remember
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that R0 is a copy of C with branch cuts extending from ±i along the pure imaginary
axis. The other restrictions of the complex inverse tangent are then given by

tan−1
k (z) = tan−1

0 (z) + πk. (10)

This is, on the one hand, consistent with our use of tan−1
k (x) for the values of the

branches of the real arctangent. On the other hand, in view of the Riemann surface
R which is the proper domain of the complex arctangent, we see that all branches are
just appropriate restrictions and, in particular, are sewn together in a unified manner
on R.

A proper implementation of a complex function like the arctangent should have
two arguments and look something like arctan(z, k) corresponding to tan−1

k (z). This
can be really important and useful for you to understand if you’re using mathemat-
ical software. Unfortunately, the documentation for Mathematica indicates that the
Mathematica function ArcTan[z] is not a proper implementation, presumably be-
cause the complex tangent function is so simple. Even in this case, one should still
have the Riemann surface and the corresponding branches in mind. The following
question presents itself immediately:

Exercise 8 If Mathematica does not have a proper implementation of arctan, then
what does it have?

Solution: The documentation will not answer this question. One can check (or plot)
ArcTan[cos t+i sin t] for t ∈ R to find that the Mathematica implementation of arctan
is precisely what we have called tan−1

0 : R0 → C, the principal complex arctangent.
This is somewhat justified in light of the simple relation (10), but still what

Wolfram has can not be called a proper implementation. A similar comment applies
to the complex logarithm implemented in Mathematica’s Log[z]. Not all functions
are so simple, and you can find that Mathematica has a proper implementation of
the Lambert “W” function given by ProductLog[k,z].

The Mathematica documentation does say that ArcTan has a “branch discontinu-
ity” along the branch cuts. In fact, we know the actual complex arctangent has no
discontinuity or singularity across those branch cuts. The only actual singularities
are at the branch points ±i.

One may finally mention that ArcTan does take a second argument in the form
ArcTan[x,y]. This seems to be primarily intended for use with both x and y real as
an alternative for Arg(z) and returns the argument of the complex number z = x+iy.

Now that we understand the inverse tangent with domain the Riemann surface
R, let’s see if we can use what we know to improve our formula for the complex
argument.
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6 Conformal Mapping and Problem 9

I guess there is no getting around it: Problem 9 is quite difficult. Finding a formula
for the argument is relatively easy as you should observe when you do Problem 10.
Finding a formula using arctan is much more difficult. Problem 8 was intended as
a hint, and I’m going to use the result of Problem 8 in the discussion of Problem 9
below. This is a little sad because Problem 8 is a really good problem for you to do
on your own without having seen my discussion of the answer below. With this in
mind, I strongly suggest you complete Problem 8 on your own before you read any
further in this section. You can do it! And then we can still be not so sad.

Even with Problem 8 solved as a hint for Problem 9, it is still far from clear how
to proceed. The next “hint” would be to go back and embrace and internalize the
beauty and power of the Riemann surface structure of the domain R of the complex
inverse tangent

tan−1 : R → C.

This, I think, is something of a stretch for most of you. And even with the beauty
and power of R, Problem 9 is still tough. But let’s assume these initial ingredients
and see what we can do.

The first thing we might do is go back and consider a bit more carefully the
formula

tan−1(y/x).

The function f(z) = y/x = Im(z)/Re(z) has domain D = {z ∈ C : Re(z) 6= 0},
and range the punctured real line R = {x ∈ R : x 6= 0} = R\{0}. In fact, the
function f maps each ray emanating from 0 ∈ C into D to a real number with the
first and third quadrant rays in two-to-one correspondence with the positive real axis
and the second and fourth quadrant rays in a two-to-one correspondence with the
negative real axis. We can visualize what is happening in this formula as indicated
in Figure 10.

Exercise 9 What is the image of the real axis under the function f(z) = y/x?

Perhaps the first thing to notice in Figure 10 is the collection of rays on the left.
All the lines passing through a point in the complex plane is called a pencil. Oddly
enough, it is called a pencil of circles because each straight line in C is considered
to be a circle passing through the point at infinity. You can think about each line
as a circle with infinite radius and passing through the two points 0 ∈ C and ∞. We
will talk more about this later. It is worth mentioning, however, that whenever one
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Figure 10: A failed attempt to write down a formula for the argument of a complex
number using the inverse tangent. Here, we can think of f : C\{iy : y ∈ R} → R ⊂ C

given by f(z) = y/x.

has a collection of circles in C passing through two fixed points, then that is a pencil
of circles. It should also occur to you that the particular pencil of circles on the left
in Figure 10 will have to play a central role in any solution to Problem 9 and also in
any formula for the argument of a complex number. Each point in each ray in that
picture has the same argument.

Moving on to the middle picture, we have suggestively embedded the real line R in
the complex plane C. The basic idea, naturally, is to replace this simple picture of the
range of f with some nontrivial range in C, or more properly, in the proper domain
of the complex arctangent, namely the Riemann surface R. This is a first suggestion
that we should replace the function f with a complex valued function g : C → R.

In order to fill out this idea we can consider the full image of tan−1 : R → C. A
second suggestion that f should be replaced and about how g might be chosen comes
from the fact that π/2 is an entirely omitted value of tan−1.

Contemplation of Figure 11 suggests attempting to find g : C → R with

Arg(z) = Re[tan−1(g(z))]. (11)

Notice that if we could arrange for the image of the positive imaginary axis under
g to lie along the branch cut in the positive imaginary axis in R0, then we would
have Re[tan−1(g(z))] = π/2. In order to get the arguments for other values of z
correct using this approach, we need to ask the question: What is the image under
the complex tangent of the vertical lines in C? This is Problem 8.

Figure 12 is intended to make several things, more or less, clear. Note first that
we have here an additional illustration of the observation mentioned above: If we
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Figure 11: The real number π/2 can never be the image of any argument of tan−1.
The real number π/2 is not in the range of tan−1. But there are other complex
numbers in the range of tan−1 whose real part is π/2.

Figure 12: The tangent mapping on vertical lines.

can arrange to have g(yi) = η1i with η1 > 1 and η1i on the right edge of the branch
cut in R0 ⊂ R, then tan−1(g(yi)) ∈ {ψ ∈ C : Reψ = π/2}. Therefore, we would
have Arg(yi) = Re[tan−1(g(yi))], which is what we want. Viewed from the reverse
direction, the part of the vertical line with real part π/2 and imaginary part positive
maps by the tangent onto the right edge of the upper branch cut in R0.

The other vertical lines on the left in Figure 12 map to circles passing through
±i. These circles form a pencil of circles (of course). Each portion of a circle in
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this pencil of circles between −i and +i maps by the inverse tangent to a vertical
line with constant real part. Thus, we would like to map the pencil of circles on
the left in Figure 10 and Figure 11 by some function g, in a more or less one-to-one
way, onto the pencil of circles on the right in Figure 12. If we can do this in the
right way, then presumably something along the lines of (11) will be correct. Before I
describe such a map, let me note something else about Figure 12 and Problem 8. The
vertical lines on the left in Figure 12 are not a pencil of circles. These “circles” only
intersect in one point, the point at ∞. So the tangent map gives a correspondence
between a collection of circles which is not a pencil and a pencil of circles. That’s
sort of interesting. In complex analysis, most nice functions preserve angles, i.e., are
conformal, and some conformal functions preserve circles in the sense that circles
map to circles (and straight lines). The most well-know class of conformal mappings
taking circles to circles are called linear fractional transformations and have the
form

h(z) =
az + b

cz + d
where a, b, c, and d are complex numbers.

Our discussion so far should suggest, at least roughly speaking, that we want to
find a function g : C → C taking the pencil of circles on the left in Figure 10 and
Figure 11 onto the pencil of circles in R indicated on the right in Figure 12. We will
also need the real axis (with argument θ = 0) to map onto the pure imaginary axis
between −i and i. This suggests something like the illustration in Figure 13. This
means the mapping g will not preserve angles at the origin. In particular, it looks like
we want the image of the angle determined by the real and imaginary axes to have
an angle of π (or 180 degees) at the image point i. Noting that a complex square has
this property, the mapping I will suggest is given by

g(z) = i
1− z2

1 + z2
. (12)

Let’s discuss this function as a composition of three useful complex functions. First
there is the square g1(z) = z2 which we can use to map our initial pencil into the
Riemann surface for z2, which you can think of as a double cover of the complex
plane with a branch point of order two at the origin as indicatedin Figure 14. When
working through how the square function works, it is useful to use the polar form for
complex numbers to verify that the argument is doubled under the square:

Exercise 10 Use complex multiplication to verify that
(

r1e
iθ1
) (

r2e
iθ2
)

= r1r2e
i(θ1+θ2)
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Figure 13: Correspondence between two pencils of circles.

Figure 14: The pencil through 0 and ∞ mapped by z2 into the Riemann surface Q
for z2.

so that in particular,
Arg(z2) = 2Arg(z).
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Thus, our pencil of circles is pulled apart using z2, but the center is still at the
origin, which is a branch point in Q. Now, we will attempt to send the origin 0 in Q
to i and ∞ to −i using a linear fractional transformation (LFT). The LFT given by

h(ζ) =
1− ζ

1 + ζ

sends 0 ∈ C to 1 and ∞ to −1 when considered as a conformal map on the extended
complex plane C ∪ {∞}, so a rotation by π/2 counterclockwise provides essentially
what we want as indicated in Figure 15.

Figure 15: Linear fractional transformations preserve circles. Here we use the map-
ping ζ 7→ i(1− ζ)/(1 + ζ) to map C ∪ {∞} → C ∪ {∞}.

Exercise 11 Find a linear fractional transformation determined by the following val-
ues:

i 7→ i
−i 7→ −i
0 7→ 1
1 7→ ∞.

What is the image of ∞ under your transformation? Notation: When we write a 7→ b
we mean that we have a function, say, f : A→ B, and we have a ∈ A and b ∈ B with
f(a) = b. So a 7→ b is read a “maps to” b or “b is the image of a” (under whatever
function we are talking about).

25



Figure 16: Here we use the mapping ζ 7→ i(1 − ζ)/(1 + ζ) to map Q → R. It may
be helpful to realize that the three sheets on the left representing domains in Q are
visualized in a different way on the right in Figure 14; there are actually only two
sheets for all of the Riemann surface Q as the square function has a branch point of
order two.
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If we want to use h to map from C to R (or even h : Q → R), then we see that
part of the negative real axis (thick red line) has already spilled out of R0. The rays
extending into the fourth quadrant (with negative argument) are happily mapped
into R0. An attempt to show the full visualization (up to some values along branch
cuts) is shown in Figure 16.

Combining the various elements of our discussion above we arrive at the following
(improved) formula for the argument of a complex number:

Arg(z) =















































Re

[

tan−1
−1

(

i
1− z2

1 + z2

)]

, Re z ≤ 0, Im z < 0,

Re

[

tan−1
0

(

i
1− z2

1 + z2

)]

, Re z ≥ 0

Re

[

tan−1
1

(

i
1− z2

1 + z2

)]

, Re z ≤ 0, Im z ≥ 0.

Some of what I’ve written down here for these cases is not entirely correct. First
of all, I’ve been a bit sloppy about the edges of the branch cuts. For example, the
middle case should really be restricted by

Re z > 0, or Re z = 0, Im z > 0, and z 6= i.

If Im z < 0 (and Re z = 0 so that z is purely imaginary on the negative imaginary
axis), then the square will fall into Q−1, the image under the linear fractional trans-
formation will fall into R−1, and we should really use the branch tan−1

−1 of the complex
arctangent instead of tan−1

0 .
You should see another (more serious) problem. I still don’t have a unified formula

for Arg(−i) and Arg(i). These two values with Arg(±i) = ±π/2 should still be
included as another case. Using the mapping g given above, this omission of ±i is
unavoidable. It arises because tan has a singularity at π/2+2πk for k = 0,±1,±2, . . .,
and with the mapping g, based on a linear fractional transformation, something must
go to ∞ corresponding to the singularity. And indeed you see g(±i) = ∞.

Aside from these shortcomings, we have a formula (modulo understanding the
complex structure of the tangent function) representing a vast improvement over
what we could handle with the real arctangent. Notice that each of the cases in our
formula above has essentially exactly the same form; you just need to use the correct
branch of the complex arctangent. With the real arctangent we had to omit the entire
imaginary axis. Consider the following example:

27



Let z = 2i. Then

Re

[

tan−1
0

(

i
1− (2i)2

1 + (2i)2

)]

= Re

[

tan−1
0

(

−5i

3

)]

= Re

[

π

2
− i coth−1

(

5

3

)]

= π/2.

So for every other purely imaginary number (other than −i and i) our formula works
perfectly. It also distinguishes seamlessly between the first and third quadrants (and
second and fourth quadrants) not by ad hoc cases but using the natural branching
structure of the complex tangent.

7 Shortcomings and Confessions

We have been successful in using the complex arctangent tan−1 : R → C to write
down a formula for Arg(z) when z ∈ C\{±i}. The two remaining points ±i are
inherently excluded from the formula, as mentioned above, due to the singularity at

π/2 + 2πk, k = 0,±1,±2, . . .

in the (complex) tangent function. There may be another choice of g : C → R which
avoids this shortcoming.

The choice of g we have used, however, is the “obvious” one. At least it is the
most natural one. After the discussion above, you may be a little incredulous at these
assertions. You may ask

1. Why is it natural?

2. And, setting the notion of “obviousness” aside, how did you (magically) come
up with this formula

g(z) = i
1− z2

1 + z2
? (13)

Of course, I tried to motivate the formula in (13) by using pencils of circles and
some things I know about linear fractional transformations (which maybe you now
know too). But really, the answer to both of these questions is the following:

In Problem 10 you should have convinced yourself that the Riemann surface

L = ∪∞

k=−∞
Ck
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associated with the complex exponential z 7→ ez is one with a single branch point
of infinite order at the origin. As a result, there are infintely many branches of the
complex logarithm generated from

log0(z) = log |z|+ iArg(z),

for z ∈ C0 with |z| > 0 and −π < Arg(z) ≤ π, and

logk : Ck → C by logk(z) = log0(z) + 2πk i.

In particular, from the point of view of complex analysis (or someone who understands
the complex logarithm) the obvious formula for Arg(z) is simply

Arg(z) = Im[log(z)]. (14)

This means, in particular, that if we are looking for a formula of the form

Arg(z) = Re
[

tan−1 g(z)
]

,

based on the idea that the image of the pencil of circles on the left in Figure 10 and
Figure 11 under ψ(z) = tan−1 g(z) will be the family of vertical lines shown on the left
in Figure 12, then we already know an “obvious” function which does this. Namely,
if we rotate the image of log z clockwise by π/2, then the horizontal lines according
to which

Arg(z) = Im(log z)

become the vertical lines with Arg(z) = Re[ψ(z)]. Of course, this is where we pick
up the singularities at π/2 + kπ for k = 0,±1,±2, . . .. Nevertheless, this means we
should want (and write down)

ψ(z) = tan−1(g(z))− = i log z.

Exercise 12 Simplify
g(z) = tan(−i log z).

Hint:

tanw = −i
eiw − e−iw

eiw + e−iw
.
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Assignment Problems

Problem 1 The complex conjugate of a complex number z = x+ iy is z̄ = x− iy.
Find z + z̄, z − z̄, and zz̄. Express Re(z), Im(z), and |z| in terms of z and z̄.

Problem 2 Draw the following subsets in the complex plane.

(a) (Boas 2.4) {z ∈ C : |z − 2| = 1}.

(b) (Boas 2.5.46) {z ∈ C : z = −iz̄}.

(b) (Boas 2.5.52) {z ∈ C : Re z = 1}.

Problem 3 Check that the series expansions

cos z =
∞
∑

ℓ=0

(−1)ℓz2ℓ

(2ℓ)!
and sin z =

∞
∑

ℓ=0

(−1)ℓz2ℓ+1

(2ℓ+ 1)!

hold for z ∈ C using the definitions

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i

given in (5) and the series expansion (definition) for the exponential.

Problem 4 Show that if one defines cosine and sine for complex arguments using
the series expansions

cos z =
∞
∑

ℓ=0

(−1)ℓz2ℓ

(2ℓ)!
and sin z =

∞
∑

ℓ=0

(−1)ℓz2ℓ+1

(2ℓ+ 1)!
,

then the formulas

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i

given in (5) still hold.

Problem 5 Check that for z = x+ iy

cos z = cosx cosh y − i sin x sinh y

using the definitions

cosh x =
ex + e−x

2
and sinh x =

ex − e−x

2

for the real hyperbolic cosine and sine.
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Problem 6 Plot the real hyperbolic cosine and sine. Derive the real McClauren series
expansions for cosh x and sinh x and determine the radii of convergence for these
series.

Problem 7 Check, as claimed above, that the image of the horizontal segment {x+
iy : −π/2 < x < π/2} (for y fixed) lies on a circle with center at i coth(2y) on the
imaginary axis.

Problem 8 Determine the image of a vertical line {x + iy ∈ C : y ∈ R} (with x
fixed) under the complex tangent function.

Problem 9 Express Arg(z) properly in terms of a branch of the complex inverse
tangent function.

Problem 10 Determine the value of the complex logarithm and determine the asso-
ciated Riemann surface by understanding the complex exponential as a mapping.
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