Exam 1
 Due Friday September 18, 2020

John McCuan

September 12, 2020

Problem 1 Find the power series expansion and radius of convergence with respect to the center of expansion $z=0$ for the following complex functions:
(a) (Boas 14.2.36) $\sqrt{1+z^{2}}$.
(b) (Boas 14.2.39) $z /\left(z^{2}+9\right)$.

Problem 2 (Boas 14.2.45) If $f(z)=u+i v$ is a complex differentiable function and $\mathbf{v}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the real vector field given by $\mathbf{v}=(v, u)$, then show
(a) $\operatorname{div} \mathbf{v}=0$.
(b) $\operatorname{curl} \mathbf{v}=0$.

Problem 3 (Boas 14.2.46) Find a system of Cauchy-Riemann equations in polar coordinates for the real and imaginary parts $\xi=\xi(r, \theta)$ and $\eta=\eta(r, \theta)$ of a complex differentiable function $f=\xi+i \eta$. Hint: Write $x=r \cos \theta$ and $y=r \sin \theta$ and apply the chain rule to $u=u(x, y)$ and $v=v(x, y)$.

Problem 4 (Boas 14.2.48) Express the real and imaginary parts ξ and η of $f(z)=$ \sqrt{z} in polar coordinates, and verify that the Cauchy-Riemann equations in polar coordinates derived in the previous problem hold for ξ and η.

Problem 5 (Boas 14.2.47) Find Laplace's equation in polar coordinates.
Problem 6 (Boas 14.2.55) Show that $u(x, y)=3 x^{2} y-y^{3}$ is harmonic and find a harmonic conjugate for u.

Problem 7 Compute

$$
\int_{\partial B_{r}\left(z_{0}\right)} \frac{1}{z-z_{0}} .
$$

Make the calculation from scratch; do not use the Cauchy integral formula or the residue theorem. What can you say about

$$
\lim _{r \searrow 0}\left|\int_{\partial B_{r}\left(z_{0}\right)} \frac{f(z)}{z-z_{0}}-\int_{\partial B_{r}\left(z_{0}\right)} \frac{f\left(z_{0}\right)}{z-z_{0}}\right| ?
$$

Hint: Remember $\left|\int q\right| \leq \int|q|$.
Problem 8 (Boas 14.3.21) Differentiate the Cauchy integral formula repeatedly (under the integral sign) to obtain a formula for the n-th derivative of a complex differentiable function f.

Problem 9 (Boas 14.11.3) Prove Liouville's Theorem: A bounded entire function is constant. The word entire here means complex differentiable on all of \mathbb{C}. Hint: Use the previous problem with $n=1$ and $\Gamma=\partial B_{r}(z)$, then estimate the integral.

Problem 10 (a) Use mathematical software to plot the image of the composition $g \circ \gamma(t)$ in the complex plane where $g(z)=e^{z}$ and $\gamma(t)=r e^{i t}$ for $0 \leq t \leq 2 \pi$ parameterizes a semicircle for various values of r between 0.1 and 3 .
(b) Consider the function $f: \mathbb{C} \backslash\{ \pm i\} \rightarrow \mathbb{C}$ by

$$
f(z)=\frac{e^{i z}}{z^{2}+1}
$$

which has a simple pole at $z=i$. Integrate around $\partial B_{R}^{+}(0)=\partial\{z \in \mathbb{C}:|z|<$ R and $\operatorname{Im}(z)>0\}$ and apply the residue theorem to calculate the real integral

$$
\int_{-\infty}^{\infty} \frac{\cos t}{t^{2}+1} d t
$$

(Bonus) At the end of my posted solution for Assignment 2 Problem 1, I mentioned several guesses (or conjectures) concerning the values of the alternating harmonic series

$$
f(z)=\sum_{j=0}^{\infty}(-1)^{j} \frac{z^{j+1}}{j+1}
$$

I wrote there "I have no idea how to prove these assertions."

Find the function f explicitly.

Hints:
(a) Think carefully about Exercise 7 in my solution to Problem 1 of Assignment 2.
(b) Review Chapter 2 Sections 6 and 7 of Boas.
(c) Use (your solution of) Problem 10 of Assignment 1 to see geometrically precisely what is going on and get the formula.

When you are done you should be able to produce/reproduce Figure 4 of my solution to Problem 1 of Assignment 2 with relative ease.

