Exam 2
 Due Friday October 16, 2020

John McCuan

November 10, 2020

Problem 1 Recall the complex numbers are given by

$$
\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\} .
$$

(a) Show that \mathbb{C} is a vector space over \mathbb{R}. What is the dimension?

Usually, when we consider \mathbb{C} as a vector space we assume it is considered as a vector space of dimension one over \mathbb{C}. Let us denote the vector space \mathbb{C} as a vector space over \mathbb{R} by $\mathbb{C}_{\mathbb{R}}$.
(b) Let $\mathcal{L}(\mathbb{C})$ denote the collection of all linear functions $L: \mathbb{C} \rightarrow \mathbb{C}$. You should have characterized this collection in Problem 1 of Assignment 4. Show that $\mathcal{L}(\mathbb{C})$ is a vector space over \mathbb{C}. What is the dimension?
(c) Let $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ denote the collection of all linear functions $L: \mathbb{C}_{\mathbb{R}} \rightarrow \mathbb{C}_{\mathbb{R}}$. Show that $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ is a vector space over \mathbb{R}. What is the dimension of $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$?
(d) Can you compare $\mathcal{L}(\mathbb{C})$ and $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$? Hint: Can one be realized as a subset of the other? What happens to the algebraic properties?

Solution:
(a) We know how to add and scale complex numbers, as \mathbb{C} is a field. If we specialize the scaling to scaling by reals, then clearly the algebraic properties of the field (associative, commutative, distributive, identity, inverses, etc.) still hold. Therefore, \mathbb{C} is a vector field over \mathbb{R}. A basis is given by

$$
\mathcal{B}=\{1, i\}
$$

as every complex number $x+i y$ (with $x, y \in \mathbb{R}$ can be written as a linear combination of these two complex numbers:

$$
x+i y=x(1)+y(i)
$$

with real coefficients. This means \mathcal{B} is a spanning set. On the other hand, if the linear combination $x(1)+y(i)=0$, then we know $x=y=0$. That is, the set \mathcal{B} is a linearly independent set. This shows the dimension of \mathbb{C} over \mathbb{R} is 2 .
(b) Now we need to know how to add and scale linear functions $L: \mathbb{C} \rightarrow \mathbb{C}$. If L_{1} and L_{2} are linear functions, then we define the sum (as usual) by $L_{1}+L_{2}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
\left(L_{1}+L_{2}\right)(z)=L_{1}(z)+L_{2}(z)
$$

Is this function linear? Yes it is:

$$
\begin{aligned}
\left(L_{1}+L_{2}\right)(a z+b w) & =L_{1}(a z+b w)+L_{2}(a z+b w) \\
& =a L_{1} z+b L_{1} w+a L_{2} z+b L_{2} w \\
& =a\left(L_{1}+L_{2}\right) z+b\left(L_{1}+L_{2}\right) w .
\end{aligned}
$$

We can also scale a linear function by any $a \in \mathbb{C}$:

$$
(a L)(z)=a L(z)
$$

and the result is also linear. Thus, we have addition and scaling. In particular, $(-1) L$ is an additive inverse for L with $L+(-L)$ giving the zero linear function $L_{0}: \mathbb{C} \rightarrow \mathbb{C}$ by $L_{0}(z) \equiv 0$ which is, of course, a linear function and the additive inverse in our vector space $\mathcal{L}(\mathbb{C})$. The required algebraic properties are easy to check:

$$
\begin{array}{cc}
\left(L_{1}+L_{2}\right)+L_{3}=L_{1}+\left(L_{2}+L_{3}\right) \quad \text { and } & (a b) L=a(b L) \\
L_{1}+L_{2}=L_{2}+L_{1} & \text { (commutative) } \\
(a+b) L=a L+b L & \text { (distributive) }
\end{array}
$$

These all follow directly from the corresponding properties of \mathbb{C} as a field. We could write out the properties in more detail, but the main point is that linear functions can be considered as vectors.

Now, the interesting question: What is a basis for this vector space over \mathbb{C} ? Actually, a set containing any nonzero element of $\mathcal{L}(\mathbb{C})$ will do, but there is one obvious choice for a basis element which is the identity transformation

$$
\text { id : } \mathbb{C} \rightarrow \mathbb{C} \quad \text { by } \quad \operatorname{id}(z)=z
$$

As observed in the wonderful Problem 1 of Assignment 4, given any linear function $L: \mathbb{C} \rightarrow \mathbb{C}$, we have $L(z)=z L(1)$. This means $L(z)=L(1) \operatorname{id}(z)$ or

$$
L=L(1) \mathrm{id} .
$$

Thus, $\{\mathrm{id}\}$ is a basis for $\mathcal{L}(\mathbb{C})$, and this vector space is one dimensional over \mathbb{C}.
(c) Every function $\mathcal{L}(\mathbb{C})$ is also in $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$: If a function $L: \mathbb{C} \rightarrow \mathbb{C}$ satisfies

$$
L(a z+b w)=a L z+b L w
$$

for every $a, b, z, w \in \mathbb{C}$, then it certainly satisfies the same condition for $a, b \in \mathbb{R}$ and $z, w \in \mathbb{C}$. But there may be functions in $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ which are not in $\mathcal{L}(\mathbb{C})$. The characterization obtained from $L(z)=z L(1)$ certainly does not work. We can say, however, for $L \in \mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ that

$$
\begin{equation*}
L(x+y i)=x L(1)+y L(i) \quad \text { for every } x, y \in \mathbb{R} \tag{1}
\end{equation*}
$$

Conversely, given any two complex numbers $a_{11}+a_{21} i$ and $a_{12}+a_{22} i$, there is a (unique) linear function $L \in \mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ given by

$$
\begin{equation*}
L(z)=L(x+i y)=x\left(a_{11}+a_{21} i\right)+y\left(a_{12}+a_{22} i\right)=x a_{11}+y a_{12}+i\left(x a_{21}+y a_{22}\right) \tag{2}
\end{equation*}
$$

Thus, we obtain in this way a characterization of linear functions $L \in \mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$, and we can ask the question: Can we add and scale such functions?
Certainly we can. If L and M are two such functions, then $L+M: \mathbb{C} \rightarrow \mathbb{C}$ obtained by just adding values: $(L+M)(z)=L z+M z$ is also the (real) linear function determined by the two complex constants

$$
L(1)+M(1) \quad \text { and } \quad L(i)+M(i)
$$

Also, if L is determined by the pair $(L(1), L(i)) \in \mathbb{C}^{2}$, then for any real scalar $\alpha \in \mathbb{R}$, the function $\alpha L: \mathbb{C} \rightarrow \mathbb{C}$ by $(\alpha L) z=\alpha L z$ corresponds to the pair $\alpha(L(1), L(i))$.

Similarly, all the vector space properties of $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ follow from the addition and (real) scaling of points in \mathbb{C}^{2} which is essentially eqiuvalent to the collection of 2×2 real matrices.

One gets from this discussion the idea that $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ is a four dimensional vector space over \mathbb{R} like the 2×2 matrices with real entries. And indeed this is the case: A basis for $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ is $\left\{L_{11}, L_{12}, L_{21}, L_{22}\right\}$ where

$$
L_{11}(z)=\operatorname{Re}(z)
$$

corresponding to the two complex constants $1+0 i$ and $0+0 i$ or... corresponding to the 2×2 matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

The function L_{11} may also be recognized as projection onto the real axis. The second basis element $L_{12}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
L_{12}(z)=\operatorname{Im}(z)
$$

which is clockwise rotation by $\pi / 2$ (multiplication by $-i$) of the projection onto the imaginary axis. The last two basis elements satisfy

$$
L_{21}(z)=i \operatorname{Re}(z) \quad \text { and } \quad L_{22}(z)=i \operatorname{Im}(z)
$$

The characterization (1-2) gives

$$
L=\operatorname{Re}[L(1)] L_{11}+\operatorname{Im}[L(1)] L_{21}+\operatorname{Re}[L(i)] L_{12}+\operatorname{Im}[L(i)] L_{22} .
$$

Thus, $\left\{L_{11}, L_{12}, L_{21}, L_{22}\right\}$ is a spanning set. In order to see $\left\{L_{11}, L_{12}, L_{21}, L_{22}\right\}$ is linearly independent and, thus, a basis, consider a linear combination

$$
\sum_{i, j} a_{i j} L_{i j}=L_{0}
$$

where $L_{0} \equiv 0$ is the zero linear function. Then applying this transformation to $z=1$ we get

$$
a_{11}+a_{21} i=0 .
$$

This means $a_{11}=a_{21}=0$. Applying the remaining terms $a_{12} L_{12}+a_{22} L_{22}$ to i gives

$$
a_{12}+i a_{22}=0,
$$

so $a_{12}=a_{22}=0$. Thus, $\left\{L_{11}, L_{12}, L_{21}, L_{22}\right\}$ is a basis for $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ over \mathbb{R}, and the dimension is 4 .
(d) Certainly it is true, as mentioned above, that $\mathcal{L}(\mathbb{C}) \subset \mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$. However, $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ is a much larger set. In particular, none of the basis elements we have taken for $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ are in $\mathcal{L}(\mathbb{C})$. It may be interesting to express the elements in the basis $\{$ id, $\rho\}$ for $\mathcal{L}(\mathbb{C})$ as linear combinations of the basis elements in $\left\{L_{11}, L_{12}, L_{21}, L_{22}\right\}$. It is easy to see that

$$
\mathrm{id}=L_{11}+L_{22} \quad \text { and } \quad \rho=L_{21}-L_{12}
$$

Finally, it is perhaps most informative to think of these vector spaces in terms of real linear transformations $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the Euclidean plane (with which we are relatively familiar) under the identificaiton $x+i y \longleftrightarrow(x, y)$. The linear functions in $\mathcal{L}(\mathbb{C})$ correspond precisely to the compositions of real rotations and real isotropic scalings of \mathbb{R}^{2} which, it will remembered, commute. The functions in $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$ correspond to all linear transformations $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the plane.

I feel as though the wording of the problem suggests some additional interesting observation concerning the algebraic properties of $\mathcal{L}(\mathbb{C})$ as a subset of $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$. Ah yes, setting aside the complex scaling associated with $\mathcal{L}(\mathbb{C})$, it may be observed that $\mathcal{L}(\mathbb{C})$ (as a set which is a subset of the real vector space $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$) is a subspace. This requires closure under addition, which of course holds, and closure under real scaling, which also holds. So, in a certain sense, there is a final question: What is the (real) dimension of $\mathcal{L}(\mathbb{C})$ as a subspace of $\mathcal{L}\left(\mathbb{C}_{\mathbb{R}}\right)$? Perhaps I will save that for the final exam.

