Exam 2 Due Friday October 16, 2020

John McCuan

October 14, 2020

Problem 1 Recall the complex numbers are given by

 $\mathbb{C} = \{ x + iy : x, y \in \mathbb{R} \}.$

(a) Show that \mathbb{C} is a vector space over \mathbb{R} . What is the dimension?

Usually, when we consider \mathbb{C} as a vector space we assume it is considered as a vector space of dimension one over \mathbb{C} . Let us denote the vector space \mathbb{C} as a vector space over \mathbb{R} by $\mathbb{C}_{\mathbb{R}}$.

- (b) Let $\mathcal{L}(\mathbb{C})$ denote the collection of all linear functions $L : \mathbb{C} \to \mathbb{C}$. You should have characterized this collection in Problem 1 of Assignment 4. Show that $\mathcal{L}(\mathbb{C})$ is a vector space over \mathbb{C} . What is the dimension?
- (c) Let $\mathcal{L}(\mathbb{C}_{\mathbb{R}})$ denote the collection of all linear functions $L : \mathbb{C}_{\mathbb{R}} \to \mathbb{C}_{\mathbb{R}}$. Show that $\mathcal{L}(\mathbb{C}_{\mathbb{R}})$ is a vector space over \mathbb{R} . What is the dimension of $\mathcal{L}(\mathbb{C}_{\mathbb{R}})$?
- (c) Can you compare L(ℂ) and L(ℂ_ℝ)? Hint: Can one be realized as a subset of the other? What happens to the algebraic properties?

Problem 2 Consider the two dimensional vector space of polynomials of degree less than or equal to one:

$$P_1[x] = \{ax + b : a, b \in \mathbb{R}\}.$$

Let $L: P_1[x] \to P_1[x]$ by

$$L[ax+b] = (a+b)x+b.$$

- (a) Express L in terms of differentiation. Hint: Note that if p(x) = ax + b, then a = p'(x). (So what is b?)
- (b) Show that L is linear.
- (c) Express L in terms of matrix multiplication with respect to the basis $\mathcal{B}_1 = \{x, 1\}$ (for both the domain and the co-domain).
- (d) Show that $\mathcal{B}_2 = \{x + 1, 3\}$ is a basis for $P_1[x]$.
- (e) Consider the linear transformation $T: P_1[x] \to P_1[x]$ given by matrix multiplication with the matrix

$$\left(\begin{array}{cc} 2 & 3\\ -1/3 & 0 \end{array}\right)$$

with respect to the basis \mathcal{B}_2 (for both the domain and the co-domain). This means

$$T[a(x+1)+3b] = (2a+3b)(x+1) - (a/3)(3)$$

because

$$\left(\begin{array}{cc}2&3\\-1/3&0\end{array}\right)\left(\begin{array}{c}a\\b\end{array}\right) = \left(\begin{array}{c}2a+3b\\-a/3\end{array}\right)$$

Calculate T[ax + b]. What interesting thing does this tell you?

Problem 3 (Boas 3.11.35) Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear function. Show the following:

If there exists a basis $\mathcal{B} = \{\mathbf{v}, \mathbf{w}\}$ such that the matrix of L with respect to \mathcal{B} (for the domain and co-domain) is a symmetric matrix, then L has a real eigenvector.

Two more related questions:

- (a) What additional conditions are required to show there exists a basis for \mathbb{R}^2 consisting of eigenvectors of L?
- (b) Is it possible that the matrix of L with respect to the standard unit basis {e₁, e₂} is not symmetric?

Problem 4 (Boas 3.2.14) Consider the system of linear equations:

 $\begin{cases} 2x + 3y - z = -2\\ x + 2y - z = 4\\ 4x + 7y - 3z = 11. \end{cases}$

- (a) Write down the equivalent matrix equation and identify the coefficient matrix, the unknown vector, and the inhomogeneity.
- (b) Find a basis for the column space consisting of columns of the coefficient matrix.
- (c) Find a basis for the solution space of the associated homogeneous equation.
- (d) What is the solution set of the (original) system?

Problem 5 (Boas 3.11.13) Consider $L : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$L\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}2x+2y\\2x-y\end{array}\right).$$

(a) Find the eigenvalues of L by considering the equation

$$\det \left(\begin{array}{cc} 2-\lambda & 2\\ 2 & -1-\lambda \end{array}\right) = 0.$$

(b) Consider $\Lambda : \mathbb{R}^2 \to \mathbb{R}^2$ by $\Lambda(\xi, \eta)^T = T^{-1} \circ L \circ T(\xi, \eta)^T$ where $T : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T\left(\begin{array}{c}\xi\\\eta\end{array}\right) = \frac{1}{\sqrt{5}} \left(\begin{array}{c}\xi+2\eta\\-2\xi+\eta\end{array}\right)$$

(The linear transformations L and Λ are said to be conjugate or similar).

- (i) Draw $\{T(\xi,\eta)^T : \xi^2 + \eta^2 = 1\}$ with $\{T(\xi,\eta)^T : \xi^2 + \eta^2 = 1, \xi > 0\}$ red and $\{T(\xi,\eta)^T : \xi^2 + \eta^2 = 1, \xi < 0\}$ blue.
- (ii) Use computational software to draw $\{L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1\}$ with $\{L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1, \xi > 0\}$ red and $\{L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1, \xi < 0\}$ blue.
- (iii) Use computational software to draw $\{T^{-1} \circ L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1\}$ with $\{T^{-1} \circ L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1, \xi > 0\}$ red and $\{T^{-1} \circ L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1, \xi < 0\}$ blue.
- (iv) Find an equation of the form

$$\frac{\xi^2}{a^2} + \frac{\eta^2}{b^2} = 1$$

satisfied by the points in $\{T^{-1} \circ L \circ T(\xi, \eta)^T : \xi^2 + \eta^2 = 1\}$. (Determine the values of a and b.

(v) Find an equation of the form

$$Ax^2 + Bxy + Cy^2 = 180$$

satisfied by the points in $\{L(x, y)^t : x^2 + y^2 = 1\}$.

(c) Define a function $e^L : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$e^{L}\left(\begin{array}{c}x\\y\end{array}\right) = \sum_{j=0}^{\infty} \frac{1}{j!} L^{j}\left(\begin{array}{c}x\\y\end{array}\right)$$

where L^{j} is iteration, meaning apply L over and over again j times, as usual.

(i) Find the values of

$$L^{2}\begin{pmatrix} x\\ y \end{pmatrix}$$
 and $L^{3}\begin{pmatrix} x\\ y \end{pmatrix}$.

If you do this directly, it should convince you that it is not exactly straightforward to find the value of e^{L} . You can complete the remaining parts of this problem to find that value.

(ii) Find the value of

$$\Lambda^{j} \left(\begin{array}{c} \xi\\ \eta \end{array}\right) \qquad for \ k = 0, 1, 2, 3, \dots$$

- (iii) Notice that $L^j(x,y)^T = T \circ \Lambda^j \circ T^{-1}(x,y)^T$.
- (iv) Notice that the partial sum

$$\sum_{j=1}^{k} \frac{1}{j!} L^{j} \begin{pmatrix} x \\ y \end{pmatrix} = T \circ \left(\sum_{j=1}^{k} \frac{1}{j!} \Lambda^{j} \right) \circ T^{-1} \begin{pmatrix} x \\ y \end{pmatrix}.$$

(v) Find the value of

$$e^L\left(\begin{array}{c}x\\y\end{array}\right).$$

Problem 6 Consider $L : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$L\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}2x+y\\3y\end{array}\right).$$

- (a) Use computational software to draw $\{L(x, y)^T : x^2 + y^2 = 1\}$ with $\{L(x, y)^T : x^2 + y^2 = 1, x > 0\}$ red and $\{L(x, y)^T : x^2 + y^2 = 1, x < 0\}$ blue.
- (b) Draw $L(1,0)^T$ and $L(1/\sqrt{2}, 1/\sqrt{2})^T$ on your figure.
- (c) What kind of set/curve do you think $\{L(x, y)^T : x^2 + y^2 = 1\}$ is? Can you prove your assertion?
- (d) Find a diagonal linear transformation Λ which is similar to L. (This should convince you that similarity does not preserve the geometry of a linear function. In other words, because you understand the geometry of a linear transformation Λ which is similar to L, does not mean you understand the geometry of the mapping L.)

Problem 7 Consider $L : \mathbb{C}^2 \to \mathbb{C}^2$ given by

$$L\left(\begin{array}{c}z\\w\end{array}\right) = \frac{1}{2}\left(\begin{array}{c}z-w\sqrt{3}\\z\sqrt{3}+w\end{array}\right)$$

A complex eigenvector for L is a **nonzero** vector $\mathbf{z} \in \mathbb{C}^2$ for which there is a complex number $\lambda + i\mu$ with

$$L(\mathbf{z}) = (\lambda + i\mu)\mathbf{z}.$$

- (a) Find an eigenvector $\mathbf{z} = \operatorname{Re}(\mathbf{z}) + i \operatorname{Im}(\mathbf{z})$ for L.
- (b) Show that $\bar{\mathbf{z}} = \operatorname{Re}(\mathbf{z}) i \operatorname{Im}(\mathbf{z})$ is an eigenvector for L. What is the eigenvalue associated with $\bar{\mathbf{z}}$?
- (c) Show that $\{\mathbf{z}, \bar{\mathbf{z}}\}$ is a basis for \mathbb{C}^2 .

Problem 8 Draw mapping pictures to illustrate the linear functions $L : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L\mathbf{x} = A\mathbf{x}$ for the following matrices A:

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \quad \text{with} \quad \lambda_1 < -1 < \lambda_2 < 0.$$

(b)

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \quad \text{with} \quad \lambda < 0.$$

(c)

$$A = \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix} \quad \text{with} \quad 0 < \lambda < \mu.$$

Hint: In case (c) write A as

$$\alpha \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right).$$

Problem 9 The "forms" given in parts (a), (b), and (c) of Problem 8 are three canonical forms for matrices, meaning that given any 2×2 matrix A_0 , there is an invertible (change of basis) matrix Q for which

$$QA_0Q^{-1} = A$$

with A in one of the "forms" given in Problem 8 (not counting the conditions on the real values of λ_1 , λ_2 , λ , or μ). The matrices A_0 and A are said to be conjugate or similar.

- (a) Find the change of basis matrix Q for which the matrix of the linear function L from Problem 7 (with respect to the standard basis {e₁, e₂}) is conjugate to a canonical form matrix.
- (b) Recall that the linear function from Problem 7 had domain and co-domain C². The canonical forms from Problem 8 apply to functions with domain and codomain ℝ². Is {(x, y) ∈ C² : x, y ∈ ℝ} a subspace of C²?
- (c) Find a subset A ⊂ ℝ² which is closed under addition but not under scaling and a linear function L : ℝ² → ℝ² for which the restriction to A gives a well-defined function L₀ : A → A. In fact, find such an example for which A is a vector space over a subfield of ℝ and L₀ is linear with respect to this vector space. Hint: ℚ is a subfield of ℝ.

Problem 10 (Boas Chapter 3 Sections 8 and 14) Given a vector space V over \mathbb{R} , an inner product is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ satisfying the following properties:

- (i) (symmetric) $\langle v, w \rangle = \langle w, v \rangle$ for every $v, w \in V$.
- (ii) (bilinear¹) $\langle av + bw, z \rangle = a \langle v, z \rangle + b \langle w, z \rangle$ for all $a, b \in \mathbb{R}$ and $v, w, z \in V$.
- (iii) (positive definite) $\langle v, v \rangle \ge 0$ for every $v \in V$ with equality if and only if $v = \mathbf{0}$.

Whenever there is an inner product on a real vector space V, then the length or norm of any vector $v \in V$ is defined by

$$\|v\| = \sqrt{\langle v, v \rangle}.$$

Whenever there is an inner product on a real vector space V, two vectors v and w, are said to be orthogonal or perpendicular if $\langle v, w \rangle = 0$.

(a) Check that the dot product on \mathbb{R}^n given by

$$\mathbf{v} \cdot \mathbf{w} = \sum_{j=1}^n v_j w_j$$

is an inner product.

(b) Given any real vector space V with an inner product, show

$$\left\|\frac{v}{\|v\|}\right\| = 1 \quad \text{for any } v \in V \setminus \{\mathbf{0}\},$$

that is, v/||v|| is a unit vector.

(c) Let $C^0[0, 2\pi]$ denote the real valued continuous functions on the interval $[0, 2\pi]$ as usual. Recall that this is a vector space over \mathbb{R} . Show that

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx$$

defines an inner product on $C^{0}[0,1]$. This is called the L^{2} inner product.

¹Technically condition (ii) is only linearity in the first argument, but in view of the symmetry condition, an inner product is linear in both arguments, or **bilinear**.

(d) Consider the order one Fourier polynomials given by

 $F_1[x] = \operatorname{span}\{\cos x, \sin x, 1\} \subset C^0[0, 2\pi].$

Find an orthonormal basis for $F_1[x]$. Note: These functions $a \cos x + b \sin x + c$ are not polynomials in the usual sense, but still they are called Fourier polynomials. Second order Fourier polynomials would look like $a_2 \cos(2x) + b_2 \sin(2x) + a_1 \cos x + b_1 \sin x + c$.

(e) Find the projection of the function $f \in C^0[0, 2\pi]$ given by f(x) = x onto the subspace $F_1[x]$.